Discrete Mathematics

Trees

Introduction

A (free) tree T is

- A simple graph such that for every pair of vertices v and w
\square there is a unique path from v to w

Rooted tree

A rooted tree is a tree where one of its vertices is designated the root

Internal and external vertices

- An internal vertex is a vertex that has at least one child
- A terminal vertex is a vertex that has no children
- The tree in the example has 4 internal vertices and 4 terminal vertices

Subtrees

A subtree of a tree T is a tree T ' such that

- $\mathrm{V}\left(\mathrm{T}^{\prime}\right) \subseteq \mathrm{V}(\mathrm{T})$ and
$\square E\left(T^{\prime}\right) \subseteq E(T)$

Spanning trees

Given a graph G, a tree T is a spanning tree of G if:
$\square \mathrm{T}$ is a subgraph of G and

- T contains all the vertices of G

Minimal spanning trees

Given a weighted graph G, a minimum spanning tree is

- a spanning tree of G
\square that has minimum "weight"

1. Prim's algorithm

- Step 0: Pick any vertex as a starting vertex (call it a). $\mathrm{T}=\{\mathrm{a}\}$.
- Step 1: Find the edge with smallest weight incident to a. Add it to T Also include in T the next vertex and call it b.
- Step 2: Find the edge of smallest weight incident to either a or b. Include in T that edge and the next incident vertex. Call that vertex c.
- Step 3: Repeat Step 2 , choosing the edge of smallest weight that does not form a cycle until all vertices are in T . The resulting subgraph T is a minimum spanning tree.

2. Kruskal's algorithm

- Step 1: Find the edge in the graph with smallest weight (if there is more than one, pick one at random). Mark it with any given color, say red.
- Step 2: Find the next edge in the graph with smallest weight that doesn't close a cycle. Color that edge and the next incident vertex.
- Step 3: Repeat Step 2 until you reach out to every vertex of the graph. The chosen edges form the desired minimum spanning tree.

Binary trees

A binary tree is a tree where each vertex has zero, one or two children

Isomorphism of trees

Given two trees T_{1} and T_{2}
$\square T_{1}$ is isomorphic to T_{2}
\square if we can find a one-to-one and onto function $\mathrm{f}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}$
\square that preserves the adjacency relation

- i.e. if $v, w \in V\left(T_{1}\right)$ and $e=(v, w)$ is an edge in T_{1}, then $e^{\prime}=(f(v), f(w))$ is an edge in T_{2}.

