
Subject: JAVA PROGRAMMING

Contents: statement objects & Resultset

SAVIYA VARGHESE

Dept of BCA

2020-21

Once a connection is obtained we can interact

with the database.

 The JDBC Statement,CallableStatement, and Pr

eparedStatement interfaces define the

methods and properties that enable you to send

SQL or PL/SQL commands and receive data from

your database.

 They also define methods that help bridge data

type differences between Java and SQL data

types used in a database.

 Statement

Use this for general-purpose access to your

database. Useful when you are using static

SQL statements at runtime. The Statement

interface cannot accept parameters.

 PreparedStatement

Use this when you plan to use the SQL

statements many times. The

PreparedStatement interface accepts input

parameters at runtime.

 CallableStatement

Use this when you want to access the

database stored procedures.

The CallableStatement interface can also

accept runtime input parameters.

Creating Statement Object
Before you can use a Statement object to execute a SQL statement,

you need to create one using the Connection object's
createStatement() method, as in the following example −

Statement stmt = null;

Try

{

stmt = conn.createStatement();

. . .

}

catch (SQLException e)

{ . . . }

finally {

. . .

}

Once you've created a Statement object, you

can then use it to execute an SQL statement

with one of its three execute methods.

boolean execute (String SQL):

 int executeUpdate (String SQL):

ResultSet executeQuery (String SQL):

• boolean execute (String SQL): Returns a

boolean value of true if a ResultSet object can

be retrieved; otherwise, it returns false. Use this

method to execute SQL DDL statements or

when you need to use truly dynamic SQL.

• int executeUpdate (String SQL): Returns the

number of rows affected by the execution of the

SQL statement.

• Use this method to execute SQL statements for

which you expect to get a number of rows

affected - for example, an INSERT, UPDATE, or

DELETE statement.

• ResultSet executeQuery (String SQL): Returns

a ResultSet object.

• Use this method when you expect to get a result

set, as you would with a SELECT statement.

A simple call to the close() method will do the job. If you
close the Connection object first, it will close the
Statement object as well. However, you should always
explicitly close the Statement object to ensure proper
cleanup.

Statement stmt = null;

try

{

stmt = conn.createStatement();

. . . }

catch (SQLException e)

{ . . . }

finally

{

stmt.close();

}

 The PreparedStatement interface extends the Statement
interface, which gives you added functionality with a couple
of advantages over a generic Statement object.

 This statement gives you the flexibility of supplying
arguments dynamically.

 Creating PreparedStatement Object

PreparedStatement pstmt = null;

try

{

String SQL = "Update Employees SET age = ? WHERE id =
?"; pstmt = conn.prepareStatement(SQL); . . .

}

catch (SQLException e)

{ . . . }

finally { . . . }

 All parameters in JDBC are represented by

the ? symbol, which is known as the parameter

marker. You must supply values for every

parameter before executing the SQL statement.

 The setXXX() methods bind values to the

parameters, where XXX represents the Java

data type of the value you wish to bind to the

input parameter. If you forget to supply the

values, you will receive an SQLException.

 Each parameter marker is referred by its ordinal

position. The first marker represents position 1,

the next position 2, and so forth. This method

differs from that of Java array indices, which

starts at 0.

 All of the Statement object's methods for

interacting with the database (a) execute(), (b)

executeQuery(), and (c) executeUpdate() also

work with the PreparedStatement object.

However, the methods are modified to use SQL

statements that can input the parameters.

 Just as you close a Statement object, for the
same reason you should also close the
PreparedStatement object.

 A simple call to the close() method will do
the job.

 If you close the Connection object first, it
will close the PreparedStatement object as
well.

However, you should always explicitly close
the PreparedStatement object to ensure
proper cleanup.

PreparedStatement pstmt = null;

Try

{

String SQL = "Update Employees SET age = ?
WHERE id = ?";

pstmt = conn.prepareStatement(SQL);

. . . }

catch (SQLException e)

{ . . . }

finally

{

pstmt.close();

}

 Just as a Connection object creates the

Statement and PreparedStatement objects, it

also creates the CallableStatement object,

which would be used to execute a call to a

database stored procedure.

 Suppose, you need to execute the following

Oracle stored procedure −

 CREATE OR REPLACE PROCEDURE getEmpName

(EMP_ID IN NUMBER, EMP_FIRST OUT

VARCHAR) AS

BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;

END;

 Three types of parameters exist: IN, OUT,

and INOUT.

 The PreparedStatement object only uses the

IN parameter.

 The CallableStatement object can use all the

three.

 IN:- A parameter whose value is unknown

when the SQL statement is created.

 You bind values to IN parameters with the

setXXX() methods.

OUT:-

A parameter whose value is supplied by the

SQL statement it returns.

You retrieve values from theOUT parameters

with the getXXX() methods.

 INOUT:-

A parameter that provides both input and

output values.

You bind variables with the setXXX() methods

and retrieve values with the getXXX()

methods.

Connection.prepareCall() method to
instantiate a CallableStatement object based
on the preceding stored procedure −

CallableStatement cstmt = null;

try

{

String SQL = "{call getEmpName (?, ?)}";

cstmt = conn.prepareCall (SQL);

. . .

}

catch (SQLException e)

{ . . . }

Finally

{ . . . }

 The String variable SQL, represents the stored

procedure, with parameter placeholders.

 Using the CallableStatement objects is much like

using the PreparedStatement objects. You must

bind values to all the parameters before

executing the statement, or you will receive an

SQLException.

 If you have IN parameters, just follow the same

rules and techniques that apply to a

PreparedStatement object; use the setXXX()

method that corresponds to the Java data type

you are binding.

When you use OUT and INOUT parameters you

must employ an additional CallableStatement

method, registerOutParameter().

 The registerOutParameter() method binds the

JDBC data type, to the data type that the stored

procedure is expected to return.

Once you call your stored procedure, you

retrieve the value from the OUT parameter with

the appropriate getXXX() method. This method

casts the retrieved value of SQL type to a Java

data type.

 Just as you close other Statement object, for

the same reason you should also close the

CallableStatement object.

 A simple call to the close() method will do

the job. If you close the Connection object

first, it will close the CallableStatement

object as well. However, you should always

explicitly close the CallableStatement object

to ensure proper cleanup.

CallableStatement cstmt = null;

try

{

String SQL = "{call getEmpName (?, ?)}";

cstmt = conn.prepareCall (SQL);

. . . }

catch (SQLException e)

{ . . . }

Finally

{

cstmt.close();

}

 The SQL statements that read data from a

database query, return the data in a result set.

 The SELECT statement is the standard way to

select rows from a database and view them in

a result set. The java.sql.ResultSet interface

represents the result set of a database query.

 A ResultSet object maintains a cursor that

points to the current row in the result set. The

term "result set" refers to the row and column

data contained in a ResultSet object.

The methods of the ResultSet interface can be

broken down into three categories −

Navigational methods: Used to move the

cursor around.

Get methods: Used to view the data in the

columns of the current row being pointed by

the cursor.

Update methods: Used to update the data in

the columns of the current row. The updates

can then be updated in the underlying

database as well.

 JDBC provides the following connection methods

to create statements with desired ResultSet −

 createStatement(int RSType, int

RSConcurrency);

 prepareStatement(String SQL, int RSType, int

RSConcurrency);

 prepareCall(String sql, int RSType, int

RSConcurrency);

 The first argument indicates the type of a

ResultSet object and the second argument is one

of two ResultSet constants for specifying

whether a result set is read-only or updatable.

The possible RS Type are given below.

 ResultSet.TYPE_FORWARD_ONLY

The cursor can only move forward in the result set.

 ResultSet.TYPE_SCROLL_INSENSITIVE

The cursor can scroll forward and backward, and the result

set is not sensitive to changes made by others to the

database that occur after the result set was created.

 ResultSet.TYPE_SCROLL_SENSITIVE.

The cursor can scroll forward and backward, and the result

set is sensitive to changes made by others to the database

that occur after the result set was created.

 If you do not specify any ResultSet type, you will

automatically get one that is

TYPE_FORWARD_ONLY

 The possible RSConcurrency are given below.

If you do not specify any Concurrency type,

you will automatically get one that is

CONCUR_READ_ONLY.

 ResultSet.CONCUR_READ_ONLY

Creates a read-only result set.

 ResultSet.CONCUR_UPDATABLE

Creates an updateable result set.

try

{

Statement stmt = conn.createStatement(

ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_READ_ONLY);

}

catch(Exception ex)

{ }

Finally

{ }

There are several methods in the ResultSet

interface that involve moving the cursor,

including −
 public void beforeFirst() throws

SQLExceptionMoves the cursor just before

the first row.
 public void afterLast() throws

SQLExceptionMoves the cursor just after the

last row.

public boolean first() throws SQLException

Moves the cursor to the first row.

public void last() throws SQLException

Moves the cursor to the last row.

public boolean absolute(int row) throws SQLException

Moves the cursor to the specified row.

public boolean relative(int row) throws SQLException

Moves the cursor the given number of rows forward or
backward, from where it is currently pointing.

 public boolean previous() throws SQLException

Moves the cursor to the previous row.

This method returns false if the previous row is off the

result set.

 public boolean next() throws SQLException

Moves the cursor to the next row.

This method returns false if there are no more rows in

the result set.

 public int getRow() throws SQLException

Returns the row number that the cursor is pointing to.

 public void moveToInsertRow() throws
SQLException

Moves the cursor to a special row in the result set
that can be used to insert a new row into the
database.

The current cursor location is remembered.

 public void moveToCurrentRow() throws
SQLException

Moves the cursor back to the current row if the
cursor is currently at the insert row; otherwise, this
method does nothing

