MICHAELIS-MENTEN EQUATION

By

Anju V Narayanan

MICHAELIS-MENTEN EQUATION

$>$ Michaelis-Menten kinetics is one of the simplest and best-known models of enzyme kinetics
> It is named after German biochemist Leonor Michaelis and Canadian physician Maud Menten

Continue.....

* The Michaelis-Menten equation arises from the general equation for an enzymatic reaction:
$\neq \mathrm{E}+\mathrm{S} \leftrightarrow \mathrm{ES} \leftrightarrow \mathrm{E}+\mathrm{P}$
* (E is the enzyme, S is the substrate, ES is the enzyme-substrate complex, and P is the product)
* The enzyme combines with the substrate in order to form the ES complex, which in turn converts to product while preserving the enzyme
* The rate of the forward reaction from $\mathrm{E}+\mathrm{S}$ to ES may be termed K_{1} and the reverse reaction as \mathbf{K}_{-1}

Continue.....

* For the reaction from the ES complex to E and P, the forward reaction rate is k_{2}, and the reverse is k_{-2}
* The ES complex may dissolve back into the enzyme and substrate, or move forward to form product.

Continue.....

* At initial reaction time, when $\mathrm{t} \approx 0$, little product formation occurs, therefore the backward reaction rate of \mathbf{K}_{-2} may be neglected
* The new reaction becomes

Continue.....

* Assuming steady state, the following rate equations may be written as:

Rate of formation of $\mathbf{E S}=\mathbf{k}_{\mathbf{1}}[\mathbf{E}][\mathbf{S}]$
Rate of breakdown of $\mathbf{E S}=\left(\mathbf{k}_{\mathbf{- 1}}+\mathbf{k}_{\mathbf{2}}\right)[\mathbf{E S}]$
Set equal to each other (brackets represent concentrations)
Therefore:
$\mathbf{k}_{\mathbf{1}}[\mathbf{E}][\mathbf{S}]=\left(\mathbf{k}_{-1}+\mathbf{k}_{\mathbf{2}}\right)[\mathbf{E S}] \quad$ Rearranging terms,
$[E][S] /[E S]=\left(k_{-1}+k_{2}\right) / k_{1}$

Continue.....

- $[E][S] /[E S]=\left(k_{-1}+k_{2}\right) / k_{1}$
- $\quad[\mathbf{E}]$ total $=[\mathbf{E}]+[\mathbf{E S}]$, where $[\mathbf{E}]$ total is the total enzyme concentration
- $[\mathbf{E}]=[\mathbf{E}]$ total $-[\mathbf{E S}]$ Substitute $[\mathbf{E}]$ in the above equation
- ([E]total - [ES]) [S]/[ES] $=\left(\mathbf{k}_{-1}+\mathbf{k}_{\mathbf{2}}\right) / \mathbf{k}_{1}$
- [E]total [S]- [ES] [S] / [ES] $=\left(\mathbf{k}_{-1}+\mathbf{k}_{2}\right) / \mathbf{k}_{1}$
$\left(\mathbf{k}_{-1}+\mathbf{k}_{\mathbf{2}}\right) / \mathbf{k}_{\mathbf{1}}=\mathbf{K}_{\mathbf{M}}($ Michaelis Constant $)$
- [E]total [S]- [ES] [S] / [ES] = $\mathbf{K}_{\mathbf{M}}$
- [E]total [S]- [ES] [S]= [ES] $\mathbf{K}_{\mathbf{M}}$ Rearranging terms,
- $\quad[\mathrm{E}]$ total $[\mathbf{S}]=[\mathrm{ES}]\left(\mathbf{K}_{\mathbf{M}+}[\mathbf{S}]\right)$

Continue.....

- [E]total $[\mathbf{S}]=[\mathrm{ES}]\left(\mathbf{K}_{\mathbf{M}+}[\mathbf{S}]\right)$
- [ES] = [E]total [S]
- $\quad \mathbf{K}_{\mathbf{M}+}[\mathbf{S}]$
- $\mathbf{V}_{\mathbf{o}}=\mathbf{k}_{2}$ [ES]
- $\mathbf{V}_{\mathbf{o}}=\mathbf{k}_{2}$ [E]total [S]

$$
\mathbf{K}_{\mathbf{M}+}[\mathbf{S}]
$$

- $\mathbf{k}_{\mathbf{2}}$ [E]total $=\mathrm{V}_{\text {max }}$
- $\mathbf{V}_{\mathbf{o}}=\mathbf{V}_{\max }[\mathbf{S}]$ $\mathbf{K}_{\mathbf{M}+}[\mathbf{S}]$

Michaelis-Menten equation

Continue.....

$$
\mathbf{V}_{\mathbf{o}}=\frac{\mathbf{V}_{\max }[\mathbf{S}]}{\mathbf{K}_{\mathbf{M}+}[\mathbf{S}]}
$$

$\mathbf{V}_{\mathbf{0}}$ is the initial velocity of the reaction
$\mathbf{V}_{\text {max }}=$ maximum velocity or maximal reaction rate
$\mathbf{S}=$ Substrate concentration
$\mathbf{K}_{\mathbf{M}}=$ Michaelis constant

THANK YOU

