
Introduction to PHP

Presented by

Nisha C.D
Asst.Professor , Dept of Computer Science

LF College, Guruvayoor

Science CalculationsScience Calculations

SystemSystem

SystemSystem

http://en.wikipedia.org/wiki/History_of_programming_languag
es

Scripting/
Interpreted
Scripting/

Interpreted

C uses curly
braces { } for
code blocks.

C uses curly
braces { } for
code blocks.

About the PHP Language
• Syntax inspired by C

- Curly braces, semicolons, no signficant whitespace

•• Syntax inspired by perl

- Dollar signs to start variable names, associative arrays

• Extends HTML to add segments of PHP within an HTML
file

Philosophy of PHP

• You are a responsible and intelligent programmer.

• You know what you want to do.• You know what you want to do.

• Some flexibility in syntax is OK - style choices are OK.

• Let’s make this as convenient as possible.

• Sometimes errors fail silently.

<h1>Hello from Dr. Chuck's HTML Page</h1>
<p>
<?php

echo "Hi there.\n";
$answer = 6 * 7;
echo "The answer is $answer, what ";echo "The answer is $answer, what ";
echo "was the question again?\n";

?>
</p>
<p>Yes another paragraph.</p>

<h1>Hello from Dr. Chuck's HTML Page</h1>
<p>
<?php

echo "Hi there.\n";
$answer = 6 * 7;
echo "The answer is $answer, what ";
echo "was the question again?\n";

?>?>
</p>
<p>Yes another paragraph.</p>

PHP from the Command Line
• You can run PHP from the

command line - the
output simply comes out

<?php
echo("Hello World!");
echo("\n");output simply comes out

on the terminal.

• It does not have to be
part of a request-response
cycle.

echo("\n");
?>

Basic Syntax

Keywords
abstract and array() as break case catch class

clone const continue declare default do else elseif
end declare endfor endforeach endif endswitch

http://php.net/manual/en/reserved.p
hp

end declare endfor endforeach endif endswitch
endwhile extends final for foreach function global

goto if implements interface instanceof namespace
new or private protected public static switch

$this throw try use var while xor

Variable Names
• Start with a dollar sign ($) followed by a letter or

underscore, followed by any number of letters, numbers,
or underscores

• Case matters• Case matters

http://php.net/manual/en/language.variables.basics.
php

$abc = 12;
$total = 0;
$largest_so_far = 0;

abc = 12;
$2php = 0;
$bad-punc = 0;

Variable Name Weirdness

Things that look like variables but are missing a dollar sign
can be confusing.

$x = 2;
$y = x + 5;
print $y;

$x = 2;
y = $x + 5;
print $x;

5 Parse error

Variable Name Weirdness

Things that look like variables but are missing a dollar sign
as an array index are unpredictable....

$x = 5;
$y = array("x" => "Hello");
print $y[x];

Hello

Strings / Different + Awesome
• String literals can use single quotes or double quotes.

• The backslash (\) is used as an “escape” character.

• Strings can span multiple lines - the newline is part of • Strings can span multiple lines - the newline is part of
the string.

• In double-quoted strings, variable values are expanded.

• Concatenation is the "." not "+" (more later).

http://php.net/manual/en/language.types.strin
g.php

<?php
echo "this is a simple string\n";

echo "You can also have embedded newlines in
strings this way as it is
okay to do";

// Outputs: This will expand:

Double
Quote

// Outputs: This will expand:
// a newline
echo "This will expand: \na newline";

// Outputs: Variables do 12
$expand = 12;
echo "Variables do $expand\n";

<?php
echo 'this is a simple string';

echo 'You can also have embedded newlines in
strings this way as it is
okay to do';

// Outputs: Arnold once said: "I'll be back"

Single
Quote

// Outputs: Arnold once said: "I'll be back"
echo 'Arnold once said: "I\'ll be back"';

// Outputs: This will not expand: \n a newline
echo 'This will not expand: \n a newline';

// Outputs: Variables do not $expand $either
echo 'Variables do not $expand $either';

echo 'This is a test'; // This is a c++ style comment
/* This is a multi line comment

yet another line of comment */

Comments in PHP

http://php.net/manual/en/language.basic-
syntax.comments.php

yet another line of comment */
echo 'This is yet another test';
echo 'One Final Test'; # This is a shell-style comment

Output
• echo is a language construct -

can be treated like a function
with one parameter. Without
parentheses, it accepts

<?php
$x = "15" + 27;
echo $x;
echo("\n");
echo $x, "\n";parentheses, it accepts

multiple parameters.

• print is a function - only one
parameter, but parentheses are
optional so it can look like a
language construct.

echo $x, "\n";
print $x;
print "\n";
print($x);
print("\n");

?>

Expressions

Expressions

• Completely normal like other languages (+ - / *)

• More agressive implicit type conversion

<?php
$x = "15" + 27;
echo($x);
echo("\n");

?>

42

Expressions
• Expressions evaluate to a value. The value can be a

string, number, boolean, etc.

• Expressions often use operations and function calls. • Expressions often use operations and function calls.
There is an order of evaluation when there is more than
one operator in an expression.

• Expressions can also produce objects like arrays.

Operators of Note
• Increment / Decrement (++ --)

• String concatenation (.)

• Equality (== !=) • Equality (== !=)

• Identity (=== !==)

• Ternary (? :)

• Side-effect Assignment (+= -= .= etc.)

• Ignore the rarely-used bitwise operators (>> << ^ | &)

Increment / Decrement
• These operators allow you to both retrieve and

increment / decrement a variable.

• They are generally avoided in civilized code.• They are generally avoided in civilized code.

$x = 12;
$y = 15 + $x++;
echo "x is $x and y is $y \n";

x is 13 and y is 27

Increment / Decrement
• These operators allow you to both retrieve and

increment / decrement a variable.

• They are generally avoided in civilized code.• They are generally avoided in civilized code.

$x = 12;
$y = 15 + $x;
$x = $x + 1;
echo "x is $x and y is $y \n";

x is 13 and y is 27

String Concatenation

PHP uses the period character for concatenation, because
the plus character would instruct PHP to do the best it could
to add the two things together, converting if necessary.to add the two things together, converting if necessary.

$a = 'Hello ' . 'World!';
echo $a . "\n";

Hello World!

Ternary
The ternary operator comes from C. It allows conditional
expressions. It is like a one-line if-then-else. Like all
“contraction” syntaxes, we must use it carefully.

$www = 123;$www = 123;
$msg = $www > 100 ? "Large" : "Small" ;
echo "First: $msg \n";
$msg = ($www % 2 == 0) ? "Even" : "Odd";
echo "Second: $msg \n";
$msg = ($www % 2) ? "Odd" : "Even";
echo "Third: $msg \n";

First: Large
Second: Odd
Third: Odd

Side-Effect Assignment
These are pure contractions. Use them sparingly.

echo "\n";
$out = "Hello";
$out = $out . " ";
$out = "Hello";
$out = $out . " ";
$out .= "World!";
$out .= "\n";
echo $out;
$count = 0;
$count += 1;
echo "Count: $count\n";

Hello World!
Count: 1

Conversion / Casting
As PHP evaluates expressions, sometimes values in the
expression need to be converted from one type to another as
the computations are done. the computations are done.

• PHP does aggressive implicit type conversion (casting).

• You can also make type conversion (casting) explicit with
casting operators.

Casting
$a = 56; $b = 12;
$c = $a / $b;
echo "C: $c\n";
$d = "100" + 36.25 + TRUE;
echo "D: ". $d . "\n";

In PHP, division forces
operands to be floating

point. PHP converts
expression values silently

and agressively.

echo "D: ". $d . "\n";
echo "D2: ". (string) $d . "\n";
$e = (int) 9.9 - 1;
echo "E: $e\n";
$f = "sam" + 25;
echo "F: $f\n";
$g = "sam" . 25;
echo "G: $g\n";

C: 4.66666666667
D: 137.25
D2: 137.25
E: 8
F: 25
G: sam25

PHP vs. Python
$x = "100" + 25;
echo "X: $x\n";
$y = "100" . 25;
echo "Y: $y\n";
$z = "sam" + 25;

x = int("100") + 25
print "X:", x
y = "100" + str(25)
print "Y:", y
z = int("sam") + 25$z = "sam" + 25;

echo "Z: $z\n";

X: 125
Y: 10025
Z: 25

z = int("sam") + 25
print "Z:", z

X: 125
Y: 10025
Traceback:"cast.py", line 5

z = int("sam") + 25;
ValueError: invalid literal

Casting

echo "A".FALSE."B\n";
echo "X".TRUE."Y\n";

The concatenation operator tries to
convert its operands to strings.
TRUE becomes an integer 1 and
then becomes a string. FALSE is echo "A".FALSE."B\n";

echo "X".TRUE."Y\n";

AB
X1Y

then becomes a string. FALSE is
“not there” - it is even “smaller”

than zero, at least when it comes to
width.

Equality versus Identity
The equality operator (==) in PHP is far more agressive than
in most other languages when it comes to data conversion
during expression evaluation.during expression evaluation.

if (123 == "123") print ("Equality 1\n");
if (123 == "100"+23) print ("Equality 2\n");
if (FALSE == "0") print ("Equality 3\n");
if ((5 < 6) == "2"-"1") print ("Equality 4\n");
if ((5 < 6) === TRUE) print ("Equality 5\n");

http://php.net/manual/en/function.strpos.p
hp

$vv = "Hello World!";
echo "First:" . strpos($vv, "Wo") . "\n";
echo "Second: " . strpos($vv, "He") . "\n";
echo "Third: " . strpos($vv, "ZZ") . "\n";
if (strpos($vv, "He") == FALSE) echo "Wrong A\n";
if (strpos($vv, "ZZ") == FALSE) echo "Right B\n";
if (strpos($vv, "He") !== FALSE) echo "Right C\n";
if (strpos($vv, "ZZ") === FALSE) echo "Right D\n";
print_r(FALSE); print FALSE;
if (strpos($vv, "ZZ") === FALSE) echo "Right D\n";
print_r(FALSE); print FALSE;
echo "Where were they?\n"; First:6

Second: 0
Third:
Wrong A
Right B
Right C
Right D
Where were they?

Beware FALSE variables. They are detectable but not
visible...

Control Structures

Conditional - if
• Logical operators (== != < > <= >= && || !)

• Curly braces

<?php<?php
$ans = 42;
if ($ans == 42) {

print "Hello world!\n";
} else {

print "Wrong answer\n";
}

?>

Hello World!

Whitespace Does Not Matter
<?php

$ans = 42;
if ($ans == 42) {

print "Hello world!\n";
} else {} else {

print "Wrong answer\n";
}

?>

<?php $ans = 42; if ($ans == 42) { print
"Hello world!\n"; } else { print "Wrong answer\n"; }
?>

Which Style do You Prefer?
<?php

$ans = 42;
if ($ans == 42)
{

print "Hello world!\n";

<?php
$ans = 42;
if ($ans == 42) { print "Hello world!\n";

}
else

{
print "Wrong answer\n";

}
?>

if ($ans == 42) {
print "Hello world!\n";

} else {
print "Wrong answer\n";

}
?>

Aesthetic
s

Multi-way
$x = 7;

if ($x < 2) {
print "Small\n";

} elseif ($x < 10) {

x < 2x < 2x < 2x < 2 print 'Small'print 'Small'print 'Small'print 'Small'
yesyes

nono

x<10x<10x<10x<10 print 'Medium'print 'Medium'print 'Medium'print 'Medium'
yesyes

nono} elseif ($x < 10) {
print "Medium\n";

} else {
print "LARGE\n";

}

print "All done\n";
print 'All Done'print 'All Done'print 'All Done'print 'All Done'

print 'LARGE'print 'LARGE'print 'LARGE'print 'LARGE'

nono

Curly Braces are Not
Required

if ($page == "Home") echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News") echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";elseif ($page == "Links") echo "You selected Links";

if ($page == "Home") { echo "You selected Home"; }
elseif ($page == "About") { echo "You selected About"; }
elseif ($page == "News") { echo "You selected News"; }
elseif ($page == "Login") { echo "You selected Login"; }
elseif ($page == "Links") { echo "You selected Links"; }

$fuel = 10;
while ($fuel > 1) {

print "Vroom vroom\n";
}

A while loop is a “zero-trip”
$fuel = 10;
while ($fuel > 1) {

print "Vroom vroom\n";
$fuel = $fuel - 1;

}

A while loop is a “zero-trip”
loop with the test at the top

before the first iteration
starts. We hand construct

the iteration variable to
implement a counted loop.

$count = 1;
do {
echo "$count times 5 is " . $count * 5;
echo "\n";

} while (++$count <= 5);

1 times 5 is 5
2 times 5 is 10
3 times 5 is 15
4 times 5 is 20
5 times 5 is 25

A do-while loop is a “one-
trip” loop with the test at the

bottom after the first
iteration completes.

for($count=1; $count<=6; $count++) {
echo "$count times 6 is " . $count * 6;
echo "\n";

} }

A for loop is the simplest
way to construct a counted

loop.

1 times 6 is 6
2 times 6 is 12
3 times 6 is 18
4 times 6 is 24
5 times 6 is 30
6 times 6 is 36

for($count=1; $count<=6; $count++) {
echo "$count times 6 is " . $count * 6;
echo "\n";

}

Before loop
starts

Loop runs while TRUE (top-
test) Run after each

iteration.

} 1 times 6 is 6
2 times 6 is 12
3 times 6 is 18
4 times 6 is 24
5 times 6 is 30
6 times 6 is 36

A for loop is the simplest
way to construct a counted

loop.

Breaking Out of a Loop
• The break statement ends the current loop and jumps to the

statement immediately following the loop.

• It is like a loop test that can happen anywhere in the body of the
loop.

for($count=1; $count<=600; $count++) {
if ($count == 5) break;
echo "Count: $count\n";

}
echo "Done\n";

loop.

Count: 1
Count: 2
Count: 3
Count: 4
Done

Finishing an Iteration with
continue

The continue statement ends the current iteration. jumps to the top
of the loop, and starts the next iteration.

Count: 1
for($count=1; $count<=10; $count++) {
if (($count % 2) == 0) continue;
echo "Count: $count\n";

}
echo "Done\n";

Count: 1
Count: 3
Count: 5
Count: 7
Count: 9
Done

Summary
This is a sprint through some of the
unique language features of PHP.

Acknowledgements / Contributions
These slides are Copyright 2010- Charles R. Severance
(www.dr-chuck.com) as part of www.wa4e.com and made
available under a Creative Commons Attribution 4.0 License.
Please maintain this last slide in all copies of the document to
comply with the attribution requirements of the license. If
you make a change, feel free to add your name and
organization to the list of contributors on this page as you
republish the materials.

Continue new Contributors and Translators here

Initial Development: Charles Severance, University of Michigan
School of Information

Insert new Contributors and Translators here including names
and dates

