CPU Scheduling
O

Operating System Concepts

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Algorithm Evaluation

Basic Concepts

O

The objective of multiprogramming is to have some process running at all
times, in order to maximize CPU utilization. In a uniprocessor system, only
one process may run at a time; any other processes must wait until the CPU is
free and can be rescheduled.

The idea of multiprogramming is relatively simple. A process is executed
until it must wait, typically for the completion of some 1/O request. In a
simple computer system, the CPU would then sit idle; all this waiting time is
wasted. With multiprogramming, we try to use this time productively. Several
processes are kept in memory at one time. When one process has to wait, the
operating system takes the CPU away from that process and gives the CPU to
another process. This pattern continues.

Scheduling is a fundamental operating-system function. Almost all com-
puter resources are scheduled before use. The CPU is, of course, one of the pri-
mary computer resources. Thus, its scheduling is central to operating-system
design.

Operating System Concepts

Maximum CPU utilization obtained with
multiprogramming

CPU-1/0 Burst Cycle — Process execution consists of
a cycle ot CPU execution and I/0 wait.

CPU burst distribution

The success of CPU scheduling depends on the following observed property
of processes: Process execution consists of a cycle of CPU execution and I/0
wait. Processes alternate between these two states. Process execution begins
with a CPU burst. That is followed by an I/O burst, then another CPU burst,
then another I/0 burst, and so on. Eventually, the last CPU burst will end with
a system request to terminate execution, rather than with another I/0 burst

Alternating Sequence of CPU And I/O Bursts

load store
add store

read from file CPL burst

H"ﬂ.ﬂ flf.'lfl.'"fj 150 burst

store lncreiment
jl]dﬂﬂ: '::FLI bIJrEI!

werite o fille

wair for 140 IFCr burst

load store
add store

read from file CPL burst

wait for 140 10 burst

Operating System Concepts

Histogram of CPU-burst Times

16 24
burst duration (milliseconds)

Operating System Concepts

Whenever the CPU becomes idle, the operating system must select one of the
processes in the ready queue to be executed. The selection process is carried
out by the short-term scheduler (or CPU scheduler). The scheduler selects from
among the processes in memory that are ready to execute, and allocates the CPU
to one of them.

The ready queue is not necessarily a first-in, first-out (FIFO) queue. As we
shall see when we consider the various scheduling algorithms, a ready queue
may be implemented as a FIFO queue, a priority queue, a tree, or simply an
unordered linked list. Conceptually, however, all the processes in the ready
queue are lined up waiting for a chance to run on the CPU. The records in the
queues are generally process control blocks (PCBs) of the processes.

» Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

» CPU scheduling decisions may take place when a
process:

1.Switches from running to waiting state.
2.Switches from running to ready state.
3.Switches from waiting to ready.

4. Terminates.

Preemptive: allows a process to be interrupted in
the midst of its CPU execution, taking the CPU
away to another process

Non- Preemptive: ensures that a process
relinquishes control of CPU when it finishes with
its current CPU burst

Scheduling under 1 and 4 is non preemptive.
All other scheduling is preemptive

Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:

switching context

switching to user mode

jumping to the proper location in the user program to restart
that program

Dispatch latency — time it takes for the dispatcher to
stop one process and start another running.

CPU utilization — keep the CPU as busy as possible

Throughput — # of processes that complete their
execution per time unit

Turnaround time — amount of time to execute a
particular process (finishing time — arrival time)

Waiting time — amount of time a process has been
waiting in the ready queue

Response time — amount of time it takes from
when a request was submitted until the first
response is produced, not output (for time-
sharing environment)

e CPU utilization: We want to keep the CPU as busy as possible. CPU
utilization may range from 0 to 100 percent. In a real system, it should range
from 40 percent (for a lightly loaded system) to 90 percent (for a heavily
used system).

o Throughput: If the CPU is busy executing processes, then work is being
done. One measure of work is the number of processes completed per time
unit, called throughput. For long processes, this rate may be 1 process per
hour; for short transactions, throughput might be 10 processes per second.

o Turnaround time: From the point of view of a particular process, the
important criterion is how long it takes to execute that process. The interval
from the time of submission of a process to the time of completion is the
turnaround time. Turnaround time is the sum of the periods spent waiting
to get into memory, waiting in the ready queue, executing on the CPU, and
doing I/0.

e Waiting time: The CPU-scheduling algorithm does not affect the amount of
time during which a process executes or does I/0; it affects only the amount
of time that a process spends waiting in the ready queue. Waiting time is
the sum of the periods spent waiting in the ready queue.

¢ Response time: In an interactive system, turnaround time may not be
the best criterion. Often, a process can produce some output fairly early,
and can continue computing new results while previous results are being
output to the user. Thus, another measure is the time from the submission
of a request until the first response is produced. This measure, called
response time, is the amount of time it takes to start responding, but not the
time that it takes to output that response. The turnaround time is generally
limited by the speed of the output device.

Max CPU utilization
Max throughput

Min turnaround time
Min waiting time
Min response time

By far the simplest CPU-scheduling algorithm is the first-come, first-served
(FCFS) scheduling algorithm. With this scheme, the process that requests the
CPU first is allocated the CPU first. The implementation of the FCFS policy is
easily managed with a FIFO queue. When a process enters the ready queue, its
PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to
the process at the head of the queue. The running process is then removed from
the queue. The code for FCFS scheduling is simple to write and understand.

Process Burst Time

P, 24
P2 3
3
Suppose that the fprocesses arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:
I:)1 PZ P3
0 24 27 30

Waiting time for P, = 0; P, =24; P,= 27
Average waiting time: (0 + 24 + 27)/3 =17

Suppose that the processes arrive in the order
P,,P,,P,.
The Gantt chart for the schedule is:

P, P Py

0 3 6 30
Waiting time for P,= 6, P,=0.P,=3

Average waiting time: (6 + 0+ 3)/3=3

Much better than previous case.

Convoy effect short process behind long process

FCFS Scheduling (Cont.)

O

In addition, consider the performance of FCFS scheduling in a dynamic
situation. Assume we have one CPU-bound process and many 1/0-bound
processes. As the processes flow around the system, the following scenario may
result. The CPU-bound process will get the CPU and hold it. During this time, all
the other processes will finish their I/O and move into the ready queue, waiting
for the CPU. While the processes wait in the ready queue, the 1/0 devices are
idle. Eventually, the CPU-bound process finishes its CPU burst and moves to
an 1/0 device. All the I/0-bound processes, which have very short CPU bursts,
execute quickly and move back to the I/O queues. At this point, the CPU sits
idle. The CPU-bound process will then move back to the ready queue and be
allocated the CPU. Again, all the 1/0 processes end up waiting in the ready
queue until the CPU-bound process is done. There is a convoy effect, as all
the other processes wait for the one big process to get off the CPU. This effect
results in lower CPU and device utilization than might be possible if the shorter
nrocesses were allowed to go first.

Operating System Concepts

s

F S

The FCFS scheduling algorithm is nonpreemptive. Unce the LI'U Tias beett
allocated to a process, that process keeps the CPU until it releases the CPU,
either by terminating or by requesting I/0. The FCFS algorithm is particularly
troublesome for time-sharing systems, where each user needs to get a share of
the CPU at regular intervals. It would be disastrous to allow one process to keep

the CPU for an extended period.

» Associate with each process the length of its next
CPU burst. Use these lengths to schedule the process
with the shortest time.

» Two schemes:

nonpreemptive — once CPU given to the process it cannot be
preempted until completes its CPU burst.

preemptive — if a new process arrives with CPU burst length
less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

» SJF is optimal — gives minimum average waiting
time for a given set of processes.

A different approach to CPU scheduling is the shortest-job-first (SJF) schedul-
ing algorithm. This algorithm associates with each process the length of the
latter’s next CPU burst. When the CPU is available, it is assigned to the process
that has the smallest next CPU burst. If two processes have the same length
next CPU burst, FCFS scheduling is used to break the tie. Note that a more
appropriate term would be the shortest next CPU burst, because the scheduling

is done by examining the length of the next CPU burst of a process, rather than
its total length. 2 a1 C -

As an example, consider the following set of processes, with the leng
the CPU-burst time given in milliseconds:

Process Burst Time
6

8
7
3

Operating System Concepts

NON PREEMPTIVE SJF

O

Using SJF scheduling, we would schedule these processes according to the
following Gantt chart:

16 24

The waiting time is 3 milliseconds for process P;, 16 milliseconds for process
P;, 9 milliseconds for process P3, and 0 milliseconds for process P;. Thus, the
average waiting time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using
the FCFS scheduling scheme, then the average waiting time would be 10.25
milliseconds.

Operating System Concepts

AELLLAZEA NN NTELLNALT .

The SJF scheduling algorithm is provably optimal, in that it gives the min-
imum average waiting time for a given set of processes. By moving a short
process before a long one, the waiting time of the short process decreases more
than it increases the waiting time of the long process. Consequently, the average
waiting time decreases.

The real difficulty with the SJF algorithm is knowing the length of the next
CPU request. For long-term (or job) scheduling in a batch system, we can use as
the length the process time limit that a user specifies when he submits the job.
Thus, users are motivated to estimate the process time limit accurately, since a
lower value may mean faster response. (Too low a value will cause a time-limit-
exceeded error and require resubmission.) SJF scheduling is used frequently in
long-term scheduling.

The SJF algorithm may be either preemptive or nonpreemptive. 1€ CROICE
arises when a new process arrives at the ready queue while a previous process is
executing. The new process may have a shorter next CPU burst than what is left
of the currently executing process. A preemptive SJF algorithm will preempt the
currently executing process, whereas a nonpreemptive SJF algorithm will allow
the currently running process to finish its CPU burst. Preemptive SJF scheduling
is sometimes called shortest-remaining-time-first scheduling.

EXAMPLE

Process Arrival Time Burst Time
0 8

1 4
2 9
3 D

If the processes arrive at the ready queue at the times shown and need the
indicated burst times, then the resulting preemptive SJF schedule is as depicted
in the following Gantt chart:

Operating System Concepts

GANTT CHART

Process P; is started at time 0, since it is the only process in the queue. Process
P, arrives at time 1. The remaining time for process P; (7 milliseconds) is
larger than the time required by process P, (4 milliseconds), so process P is
preempted, and process P; is scheduled. The average waiting time for this
exampleis ((10 — 1)+ (1 — 1) + (17 — 2) + (5 — 3)) /4 = 26 /4 = 6.5 milliseconds. A
nonpreemptive SJF scheduling would result in an average waiting time of 7.75
milliseconds. '

Operating System Concepts

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
SJF (non-preemptive)
P, P, P, P,
0 7 8 12 16

Averace wartinetime=(o0 + 6 +2 + 7)/4- 4

Operating System Concepts

Process Arrival Time Burst Time

P, 0.0 7
P, 2.0 4
P, 4.0 1
P, 5.0 4
SJF (preemptive)
P, | P, |P; | P, P, P,
0) 2 4 5 | 11 |

Averace waitinetime=(o+1+ 0 +2)/4 =92

Priority Scheduling

O

The SJF algorithm is a special case of the general priority-scheduling algorithm.
A priority is associated with each process, and the CPU is allocated to the
process with the highest priority. Equal-priority processes are scheduled in
ECFS order.

An SJF algorithm is simply a priority algorithm where the priority (p) is the
inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower
the priority, and vice versa.

Operating System Concepts

As an example, consider the followg set of processes, assumed to have
arrived at time 0, in the order P;, P,, ..., P5, with the length of the CPU-burst
time given in milliseconds:

Operating System Concepts

Process Burst Time Priority

Using priority scheduling, we would schedule these processes according to the

following Gantt chart:

Operating System Concepts

O

Priorities can be defined either internally or externally. Internally defined
priorities use some measurable quantity or quantities to compute the priority of
a process. For example, time limits, memory requirements, the number of open
files, and the ratio of average 1/0 burst to average CPU burst have been used
in computing priorities. External priorities are set by criteria that are external
to the operating system, such as the importance of the process, the type and
amount of funds being paid for computer use, the department sponsoring the
work, and other, often political, factors.

Priority scheduling can be either preemptive or nonpreemptive. When a
process arrives at the ready queue, its priority is compared with the priority of
the currently running process. A preemptive priority-scheduling algorithm will
preempt the CPU if the priority of the newly arrived process is higher than the
priority of the currently running process. A nonpreemptive priority-scheduling
algorithm will simply put the new process at the head of the ready queue.

A major problem with priority-scheduling algorithms 1s indehnite block-
ing (or starvation). A process that is ready to run but lacking the CPU can
be considered blocked —waiting for the CPU. A priority-scheduling algorithm
can leave some low-priority processes waiting indefinitely for the CPU. In a

heavily loaded computer system, a steady stream of higher-priority processes
rnm nravant a laur-nriarity nrocess from ever getting the CPU. Generally, one of

A priority number (integer) is associated with each
process

The CPU is allocated to the process with the highest
priority (smallest integer = highest priority).
Preemptive
nonpreemptive
SJF is a priority scheduling where priority is the
predicted next CPU burst time.

Problem = Starvation — low priority processes may
never execute.

Solution = Aging — as time progresses increase the
priority of the process.

Round Robin (RR)

O

The round-robin (RR) scheduling algorithm is designed especially for time-
sharing systems. It is similar to FCFS scheduling, but preemption is added to
switch between processes. A small unit of time, called a time quantum (or time
slice), is defined. A time quantum is generally from 10 to 100 milliseconds. The
ready queue is treated as a circular queue. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time interval of up to 1
time quantum.

To implement RR scheduling, we keep the ready queue as a FIFO queue of
processes. New processes are added to the tail of the ready queue. The CPU
scheduler picks the first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process.

Operating System Concepts

O

———— - -lv-wnwwnnt, A AW “;Ur/ul-\ll\-u A AN rl.lv\-\vUUc

One of two things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will release the CPU
voluntarily. The scheduler will then proceed to the next process in the ready
queue. Otherwise, if the CPU burst of the currently running process is longer
than 1 time quantum, the timer will go off and will cause an interrupt to the
operating system. A context switch will be executed, and the process will be
put at the tail of the ready queue. The CPU scheduler will then select the next

process in the ready queue.

Operating System Concepts

O

The average wéiting time under the RR policy, however, is often quite long.
Consider the following set of processes that arrive at time 0, with the length of
the CPU-burst time given in milliseconds:

Process Burst Time

P, 24
P, 3
P3 3

If we use a time quantum of 4 milliseconds, then process P; gets the first
4 milliseconds. Since it requires another 20 milliseconds, it is preempted after
the first time quantum, and the CPU is given to the next process in the queue,
process P,. Since process P, does not need 4 milliseconds, it quits before its time
quantum expires. The CPU is then given to the next process, process P3. Once
each process has received 1 time quantum, the CPU is returned to process P; for
an additional time quantum. The resulting RR schedule is

Operating System Concepts

0 7 10 1 18 2 T 30

The average waiting time is 17/3 = 5.66 milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more
than 1 time quantum in a row. If a process’ CPU burst exceeds 1 time quantum,
that process is preempted and is put back in the ready queue. The RR scheduling

algorithm is preemptive.

IR | AERERDR

Operating System Concepts

O

The performance of the RR algorithm depends Neavily ULl LIE S1ee UL i
time quantum. At one extreme, if the time quantum is very large (infinite), the
RR policy is the same as the FCFS policy. If the time quantum is very small (say
1 microsecond), the RR approach is called processor sharing, and appears (in
theory) to the users as though each of 7 processes has its own processor running
at 1/n the speed of the real processor. This approach was used in Control
Data Corporation (CDC) hardware to implement 10 peripheral processors with
only one set of hardware and 10 sets of registers. The hardware executes one
instruction for one set of registers, then goes on to the next. This cycle continues,
resulting in 10 slow processors rather than one fast processor. (Actually, since
the processor was much faster than memory and each instruction referenced
memory, the processors were not much slower than 10 real processors would
have been.)

Each process gets a small unit of CPU time (time
quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

If there are n processes in the ready queue and the
time quantum is g, then each process gets 1/n of the
CPU time in chunks of at most g time units at once.
No process waits more than (n-1)g time units.

Performance

q large = FIFO

g small = g must be large with respect to context switch,
otherwise overhead is too high.

Example of RR with Time Quantum = 20

O

DN

Operating System Concepts

» Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

» Each queue has its own scheduling algorithm,

foreground — RR
background — FCFS

» Scheduling must be done between the queues.
Fixed priority scheduling; (i.e., serve all from foreground then
from background). Possibility of starvation.

Time slice — each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e., 80% to
foreground in RR

20% to background in FCFS

O

Uubl\bwi A ra. N N N M M W N W

A multilevel queue-scheduling algorithm partitions the ready queue into
several separate queues (Figure 6.6). The processes are permanently assigned
to one queue, generally based on some property of the process, such as memory
size, process priority, or process type. Each queue has its own scheduling
algorithm. For example, separate queues might be used for foreground and
background processes. The foreground queue might be scheduled by an RR
algorithm, while the background queue is scheduled by an FCFS algorithm.

In addition, there must be scheduling among the queues, which is com-
monly implemented as fixed-priority preemptive scheduling. For example, the
foreground queue may have absolute priority over the background queue.

Operating System Concepts

Multilevel Queue Scheduling

lowest priority

Operating System Concepts

Let us look at an example of a multilevel queue-scheduling algorithm with
five queues:

. System processes

. Interactive processes

. Interactive editing processes
. Batch processes

. Student processes

Operating System Concepts

O

Each queue has absolute priority over lower-priority queues. No process in the
batch queue, for example, could run unless the queues for system processes,
interactive processes, and interactive editing processes were all empty. If an
interactive editing process entered the ready queue while a batch process was
running, the batch process would be preempted. Solaris 2 uses a form of this
algorithm.

Another possibility is to time slice between the queues. Each queue gets a
certain portion of the CPU time, which it can then schedule among the various
processes in its queue. For instance, in the foreground-background queue
example, the foreground queue can be given 80 percent of the CPU time for
RR scheduling among its processes, whereas the background queue receives 20
percent of the CPU to give to its processes in a FCFS manner.

Operating System Concepts

» A process can move between the various queues;
aging can be implemented this way.

» Multilevel-feedback-queue scheduler defined by the
following parameters:
number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter
when that process needs service

Normally, in a multilevel queue-scheduling algorithm, processes are perma-
nently assigned to a queue on entry to the system. Processes do not move
between queues. If there are separate queues for foreground and background
processes, for example, processes do not move from one queue to the other,
since processes do not change their foreground or background nature. This
setup has the advantage of low scheduling overhead, but the disadvantage of
being inflexible.

Multilevel feedback queue scheduling, however, allows a process to move
between queues. The idea is to separate processes with different CPU-burst
characteristics. If a process uses too much CPU time, it will be moved to a
lower-priority queue. This scheme leaves I/0-bound and interactive processes
in the higher-priority queues. Similarly, a process that waits too long in a lower-
priority queue may be moved to a higher-priority queue. This form of aging
prevents starvation.

-

Multilevel Feedback Queues

-I quantum =8 i—

—bl quantum = 16 i

Operating System Concepts

Example of Multilevel Feedback Queue

» Three queues:

o Q, — time quantum 8 milliseconds

O Q, — time quantum 16 milliseconds
o Q, — FCFS

» Scheduling

o A new job enters queue Q, which is served FCFS. When it
gains CPU, job receives 8 milliseconds. If it does not finish in
8 milliseconds, job is moved to queue Q..

o At Q, job is again served FCFS and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q..

Operating System Concepts

CPU scheduling more complex when multiple CPUs
are available.

Homogeneous processors within a multiprocessor.

Load sharing

Asymmetric multiprocessing — only one processor
accesses the system data structures, alleviating the

need for data sharing.

Hard real-time systems — required to complete a
critical task within a guaranteed amount of time.

Soft real-time computing — requires that critical
processes receive priority over less fortunate ones.

Dispatch Latency

response 1o event

responss interval o

Process made
available

W————— dispatch latancy ——m

raal-time
process

EnaciLItion
y—

— conflicts ——s

Operating System Concepts

Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each algorithm for that workload.

Queueing models
Implementation

Evaluation of CPU Schedulers by Simulation

paformance
simulation e Slatistics

for FOFS
| FGFS |

CPU 10
o 213
CPU 12 perfarmance
o 112 C rreeee— simulation e Slatistics

CPU 2 for SJF
W 147 | &1F |

CPU 173

@ o om

frace lape

parformanca
simulation mmje statistics

for AR(Q = 14)
[RA(=14) |

Operating System Concepts

O

For example, consider a multilevel feedback queue scheduler with three
queues, numbered from 0 to 2 (Figure 6.7). The scheduler first executes all
processes in queue 0. Only when queue 0 is empty will it execute processes
in queue 1. Similarly, processes in queue 2 will be executed only if queues 0
and 1 are empty. A process that arrives for queue 1 will preempt a process in
queue 2. A process that arrives for queue 0 will, in turn, preempt a process in

queue 1.

-~

Operating System Concepts

O

A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this time,
it is moved to the tail of queue 1. If queue 0 is empty, the process at the head
of queue 1 is given a quantum of 16 milliseconds. If it does not complete, it is
preempted and is put into queue 2. Processes in queue 2 are run on an FCFS
basis, only when queues 0 and 1 are empty.

This scheduling algorithm gives highest priority to any process with a CPU
burst of 8 milliseconds or less. Such a process will quickly get the CPU, finish its
CPU burst, and go off to its next I/O burst. Processes that need more than 8, but
less than 24, milliseconds are also served quickly, although with lower priority
than shorter processes. Long processes automatically sink to queue 2 and are
served in FCFS order with any CPU cycles left over from queues 0 and 1.

O

In general, a multilevel feedback queue scheduler is defined by the tollow-
ing parameters:

e The number of queues
e The scheduling algorithm for each queue

e The method used to determine when to upgrade a process to a higher-
priority queue

e The method used to determine when to demote a process to a lower-priority
queue

e The method used to determine which queue a process will enter when that
process needs service

Operating System Concepts

The definition of a multilevel feedback queue scheduler makes it the most

general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it also requires some means of selecting
values for all the parameters to define the best scheduler. Although a multilevel
feedback queue is the most general scheme, it is also the most complex.

Operating System Concepts

Process Scheduling Models

Linux Process Scheduling

B 2 separate process-scheduling algorithms
B time-sharing: a prioritized credit-based
mSoft-real time: FCFS and RR

®m only allows processes in a user mode to be
preempted.

class-

global scheduling specific scheduler run
priority order priorities classes queue

highest first real time kernel
A A o threads of real-
time LWPs

kernel
service
threads

interactive and kernel
time sharing -0 threads of
interactive and
time-sharing
LWPs

A
lowest

normal

idle
priority

time-critical

15

15

highest

10

6

above normal

normal

below normal

lowest

5
4
3
2

idle

1

