
Multithreaded Programming

By,

Hitha Paulson

Assistant Professor, Dept. of Computer 
Science

LF College, Guruvayoor



Multithreading

 Thread

• Smallest unit of dispatchable code of a 
program

• Light weight compared to a process

 Multi-Thread

• More than one parts of a program that can 
execute concurrently

• Specialized form of multitasking

• Programmer can write code to generate 
multiple threads





Multithreading: pros and cons

 Single Threaded Program 
• allows one part of the program can execute at 

a time
• It waste CPU time by keeping CPU idle. Eg: 

Data Read operation
• When a thread blocks, entire program stops 

running

 Multithreaded Program
• Multiple part of the program in execution, thus 

keeps CPU busy all time
• Share same address space
• Inter-Thread communication is inexpensive
• Low cost context switch



Java Thread Model

 States of Thread

• Running

• Ready to run

• Suspended

• Resumed

• Blocked

• Terminated





Thread Priorities

 Integers to specify the relative priority of 
one thread compared to another thread

 It is used to decide when to switch from 
one thread to next thread (Context 
switch)

 Rules for context switch

• A thread can voluntarily relinquish control

• A Thread can be preempted by a higher 
priority Thread



Synchronization

 The mechanism prevents the execution of one 
thread, which affects the execution of another 
thread

 Protects shared asset being manipulated by more 
than one Thread at a time

 Statements in different threads executes 
synchronously.

 Implementation of critical region

 Java uses Monitors to handle Synchronization

 Once a Thread enters a monitor, all other threads 
must wait until that Thread exits the Monitor



The Main Thread

 Every Java Application program is executing 
with Thread called MAIN THREAD

 This Thread will automatically create when a 
program starts executing

 All child threads are created from this Main 
Thread

 This Thread terminates only after rest of child 
Threads are terminated

 The default name of this Thread is “main”

 When a thread object is printed, displays: 
[Thread Name, Priority, Group]

 Thread.currentThread(), getName(), 
setName(String)



Creating Thread

 Two Methods
• Use Thread Class

• Use Runnable interface

 Using Thread Class
• Create a class that extended from Thread class

• Define a method called run() I the format 
public void run()

• Run() method contain the code that constitutes the 
thread

• Run() is like any other method can do anything

• Run() will act as the entry point for the thread and it will 
end when run() terminates

• Thread is invoked by using start() method with object of 
class extended from Thread class



 Using Runnable Interface
• Create a class that implements Runnable 

Interface

• Redefine the abstract method run(). Eg: public 
void run()

• Run() method contain the code that 
constitutes the thread

• Run() is like any other method can do anything

• Run() will act as the entry point for the thread 
and it will end when run() terminates

• Thread is invoked by using start() method with 
object of class implemented Runnable interface



isAlive() and join()

 isAlive() 

• used to determine whether a thread has 
finished or not

• Returns boolean value to indicate the 
status

 join()

• Used to wait for a thread to finish

• void join() throws InterruptedException

• Allows to specify maximum amount of time 
that a Thread should wait for termination



Thread Priority

 Used by the thread scheduler to 
decide when each thread should be 
allowed to run

 Higher priority thread will get more 
CPU time than lower priority threads

 A priority thread can preempt by low 
priority thread

 Threads having equal priority should 
get equal access to the CPU



Implementing Thread Priority

 void setPriority(int level)

 Value of Level must be within the range 
MIN_PRIORITY and MAX_PRIORITY

 NORM_PRIORITY used to set/get default 
priority

 All these are final variables in Thread 
class

 int getPriority() used to get the priority



Synchronization

 The mechanism used to ensure that 
the shared resources are accessed 
by more than one threads in a 
sequential manner

 No two threads are simultaneously 
operating upon a shared resource

 Synchronization is implemented by 
using monitor (also called 
Semaphore)



Monitor

 A monitor is an object that is used as a 
mutually exclusive lock or mutex

 Only one thread can own a monitor at a 
given time

 When a thread acquires a lock,
• Thread entered the monitor

• All other threads will suspend as long as the 
first thread exits the monitor

• ie) all other threads are waiting for the monitor

• A locked thread can reenter the same monitor



Implementing Synchronization

 Java uses Synchronized methods, methods 
declared with synchronized keyword

 All objects have their own implicit monitor 
associated with them

 Call to a synchronized method invokes the 
monitor in that object

 While a thread is inside the synchronized method, 
all other threads that try to call it on the same 
instance must wait

 Exiting from synchronized method releases the 
monitor

 Unsynchronized methods causes race condition.



Interthread Communication

 Synchronized methods can communicate each other without 
using polling

 Methods to support interthreaded communication: wait(), 
notify(), notifyAll()

 All are final methods defined in Object class

 All methods can call from synchronized context

 wait(): tells the calling thread to give up the monitor and go 
to sleep until some other thread enters the same thread and 
calls notify()

 notify(): wakes up a thread that called wait() on the same 
object

 notifyAll(): wakes up all the threads that called wait() on the 
same object. One of the thread will granted access

 All the above methods will throw InterruptedException


