
Multithreaded Programming

By,

Hitha Paulson

Assistant Professor, Dept. of Computer 
Science

LF College, Guruvayoor



Multithreading

 Thread

• Smallest unit of dispatchable code of a 
program

• Light weight compared to a process

 Multi-Thread

• More than one parts of a program that can 
execute concurrently

• Specialized form of multitasking

• Programmer can write code to generate 
multiple threads





Multithreading: pros and cons

 Single Threaded Program 
• allows one part of the program can execute at 

a time
• It waste CPU time by keeping CPU idle. Eg: 

Data Read operation
• When a thread blocks, entire program stops 

running

 Multithreaded Program
• Multiple part of the program in execution, thus 

keeps CPU busy all time
• Share same address space
• Inter-Thread communication is inexpensive
• Low cost context switch



Java Thread Model

 States of Thread

• Running

• Ready to run

• Suspended

• Resumed

• Blocked

• Terminated





Thread Priorities

 Integers to specify the relative priority of 
one thread compared to another thread

 It is used to decide when to switch from 
one thread to next thread (Context 
switch)‏

 Rules for context switch

• A thread can voluntarily relinquish control

• A Thread can be preempted by a higher 
priority Thread



Synchronization

 The mechanism prevents the execution of one 
thread, which affects the execution of another 
thread

 Protects shared asset being manipulated by more 
than one Thread at a time

 Statements in different threads executes 
synchronously.

 Implementation of critical region

 Java uses Monitors to handle Synchronization

 Once a Thread enters a monitor, all other threads 
must wait until that Thread exits the Monitor



The Main Thread

 Every Java Application program is executing 
with Thread called MAIN THREAD

 This Thread will automatically create when a 
program starts executing

 All child threads are created from this Main 
Thread

 This Thread terminates only after rest of child 
Threads are terminated

 The default name of this Thread is “main”

 When a thread object is printed, displays: 
[Thread Name, Priority, Group]

 Thread.currentThread(), getName(), 
setName(String)‏



Creating Thread

 Two Methods
• Use Thread Class

• Use Runnable interface

 Using Thread Class
• Create a class that extended from Thread class

• Define a method called run() I the format 
public void run()‏

• Run() method contain the code that constitutes the 
thread

• Run() is like any other method can do anything

• Run() will act as the entry point for the thread and it will 
end when run() terminates

• Thread is invoked by using start() method with object of 
class extended from Thread class



 Using Runnable Interface
• Create a class that implements Runnable 

Interface

• Redefine the abstract method run(). Eg: public 
void run()‏

• Run() method contain the code that 
constitutes the thread

• Run() is like any other method can do anything

• Run() will act as the entry point for the thread 
and it will end when run() terminates

• Thread is invoked by using start() method with 
object of class implemented Runnable interface



isAlive() and join()‏

 isAlive() 

• used to determine whether a thread has 
finished or not

• Returns boolean value to indicate the 
status

 join()‏

• Used to wait for a thread to finish

• void join() throws InterruptedException

• Allows to specify maximum amount of time 
that a Thread should wait for termination



Thread Priority

 Used by the thread scheduler to 
decide when each thread should be 
allowed to run

 Higher priority thread will get more 
CPU time than lower priority threads

 A priority thread can preempt by low 
priority thread

 Threads having equal priority should 
get equal access to the CPU



Implementing Thread Priority

 void setPriority(int level)‏

 Value of Level must be within the range 
MIN_PRIORITY and MAX_PRIORITY

 NORM_PRIORITY used to set/get default 
priority

 All these are final variables in Thread 
class

 int getPriority() used to get the priority



Synchronization

 The mechanism used to ensure that 
the shared resources are accessed 
by more than one threads in a 
sequential manner

 No two threads are simultaneously 
operating upon a shared resource

 Synchronization is implemented by 
using monitor (also called 
Semaphore)



Monitor

 A monitor is an object that is used as a 
mutually exclusive lock or mutex

 Only one thread can own a monitor at a 
given time

 When a thread acquires a lock,
• Thread entered the monitor

• All other threads will suspend as long as the 
first thread exits the monitor

• ie) all other threads are waiting for the monitor

• A locked thread can reenter the same monitor



Implementing Synchronization

 Java uses Synchronized methods, methods 
declared with synchronized keyword

 All objects have their own implicit monitor 
associated with them

 Call to a synchronized method invokes the 
monitor in that object

 While a thread is inside the synchronized method, 
all other threads that try to call it on the same 
instance must wait

 Exiting from synchronized method releases the 
monitor

 Unsynchronized methods causes race condition.



Interthread Communication

 Synchronized methods can communicate each other without 
using polling

 Methods to support interthreaded communication: wait(), 
notify(), notifyAll()

 All are final methods defined in Object class

 All methods can call from synchronized context

 wait(): tells the calling thread to give up the monitor and go 
to sleep until some other thread enters the same thread and 
calls notify()

 notify(): wakes up a thread that called wait() on the same 
object

 notifyAll(): wakes up all the threads that called wait() on the 
same object. One of the thread will granted access

 All the above methods will throw InterruptedException


