Subject: Discrete Mathematics
Topic: Types of graph
Name of the teacher: Lisna Thomas
Academic year: 2020-2021

TYPES OF GRAPH

Reqular Graph-

- A graph in which degree of all the vertices is same is called as a regulargraph.
- If all the vertices in a graph are of degree ' k ', then it is called as a " k-regular graph".

Examples-

n these graphs,
Examples of Regular Graph

- All the vertices have degree-2.
- Therefore, they are 2-Regular graphs.

Complete Graph-

- A graph in which exactly one edge is present between every pair of vertices is called as a complete graph.
- A complete graph of ' n ' vertices contains exactly ${ }^{n} \mathrm{C}_{2}$ edges.
- A complete graph of ' n ' vertices is represented as K_{n}.

Examples-

K_{3}

K4

In these graphs,

- Each vertex is connected with all the remaining vertices through exactly one edge.
- Therefore, they are complete graphs.

Bipartite Graph-

A bipartite graph is a graph where-

- Vertices can be divided into two sets X and Y.
- The vertices of set X only join with the vertices of set Y.
- None of the vertices belonging to the same set join each other.

Example-

Bipartite Graph Example-

The following graph is an ex

Example of Bipartite Graph

Here,

- The vertices of the graph can be decomposed into two sets.
- The two sets are $X=\{A, C\}$ and $Y=\{B, D\}$.
- The vertices of set X join only with the vertices of set Y and vice-versa.
- The vertices within the same set do not join.
- Therefore, it is a bipartite graph.

Complete Bipartite Graph-

A complete bipartite graph may be defined as follows-

A bipartite graph where every vertex of set X is joined to every vertex of set Y
is called as complete bipartite graph.
OR
Complete bipartite graph is a bipartite graph which is complete.
OR
Complete bipartite graph is a graph which is bipartite as well as complete.

Complete Bipartite Graph Example-

Example of Complete Bipartite Graph

Here,

- This graph is a bipartite graph as well as a complete graph.
- Therefore, it is a complete bipartite graph.
- This graph is called as $\mathbf{K}_{4,3}$.

Directed Graph-

- A graph in which all the edges are directed is called as a directed graph.
- In other words, all the edges of a directed graph contain some direction.
- Directed graphs are also called as digraphs.

Example-

Example of Directed Graph

Here,

- This graph consists of four vertices and four directed edges.
- Since all the edges are directed, therefore it is a directed graph.

Planar Graph-

- A planar graph is a graph that we can draw in a plane such that no two edges of it cross each other.

Example of Planar Graph

Here,

- This graph can be drawn in a plane without crossing any edges.
- Therefore, it is a planar graph.

Regions of Plane-

The planar representation of the graph splits the plane into connected areas called as Regions of the plane.

Each region has some degree associated with it given as-

- Degree of Interior region = Number of edges enclosing that region
- Degree of Exterior region = Number of edges exposed to that region

Example-

R4

Regions of Plane

Here, this planar graph splits the plane into 4 regions- R1, R2, R3 and R4 where-

- \quad Degree $(\mathrm{R} 1)=3$
- \quad Degree (R2) $=3$
- \quad Degree (R3) $=3$
- \quad Degree (R4) $=5$

Planar Graph Properties-

Property-01:

In any planar graph, Sum of degrees of all the vertices $=2 x$ Total number of edges in the graph

Property-02:

In any planar graph, Sum of degrees of all the regions $=2 x$ Total number of edges in the graph

Euler Graph-

- Euler Graph is a connected graph in which all the vertices are even degree.

An Euler graph may be defined as-
Any connected graph is called as an Euler Graph if and only if all its vertices are of even degree.
OR
An Euler Graph is a connected graph that contains an Euler Circuit.

Euler Graph-

Example-

Example of Euler Graph

Here,

- This graph is a connected graph.
- The degree of all the vertices is even.
- Therefore, it is an Euler graph.

Euler Path-

Euler path is also known as Euler Trail or Euler Walk.

- If there exists a Trail in the connected graph that contains all the edges of the graph, then that trail is called as an Euler trail.

OR

- If there exists a walk in the connected graph that visits every edge of the graph exactly once with or without repeating the vertices, then such a walk is called as an Euler walk.

Walk in Graph Theory-

- A walk is defined as a finite length alternating sequence of vertices and edges.
- The total number of edges covered in a walk is called as Length of the Walk.

Walk in Graph Theory Example-

Consider the following graph-

In this graph, few examples of walk are-

- $\quad a, b, c, e, d($ Length $=4)$
- $\quad d, b, a, c, e, d, e, c($ Length $=7)$
- $\quad e, c, b, a, c, e, d(L e n g t h=6)$

Open Walk in Graph Theory-

In graph theory, a walk is called as an Open walk if-

- Length of the walk is greater than zero
- And the vertices at which the walk starts and ends are different.

Closed Walk in Graph Theory-

In graph theory, a walk is called as a Closed walk if-

- Length of the walk is greater than zero
- And the vertices at which the walk starts and ends are same.

Path in Graph Theory-

In graph theory, a path is defined as an open walk in which-

- Neither vertices (except possibly the starting and ending vertices) are allowed to repeat.
- Nor edges are allowed to repeat.

Cycle in Graph Theory-

In graph theory, a cycle is defined as a closed walk in which-

- Neither vertices (except possibly the starting and ending vertices) are allowed to repeat.
- Nor edges are allowed to repeat.

OR
In graph theory, a closed path is called as a cycle.

Trail in Graph Theory-

In graph theory, a trail is defined as an open walk in which-

- Vertices may repeat.
- But edges are not allowed to repeat.

Circuit in Graph Theory-

In graph theory, a circuit is defined as a closed walk in which-

- Vertices may repeat.
- But edges are not allowed to repeat.

OR
In graph theory, a closed trail is called as a circuit.

Important Chart to Remember

Problem-01:

Consider the following graph-

Decide which of the following sequences of vertices determine walks.
For those that are walks, decide whether it is a circuit, a path, a cycle or a trail.

1. a, b, g, f, c, b
2. b, g, f, c, b, g, a
3. c, e, f, c
4. c, e, f, c, e
5. a, b, f, a
6. f, d, e, c, b

Solution-

1. Trail
2. Walk
3. Cycle
4. Walk
5. Not a walk
6. Path

Problem-02:

Consider the following graph-

Consider the following sequences of vertices and answer the questions that follow-

1. x, v, y, w, v
2. x, u, x, u, x
3. x, u, v, y, x
4. x, v, y, w, v, u, x

Decide which of the following sequences of vertices determine walks.
For those that are walks, decide whether it is a circuit, a path, a cycle or a trail.

Euler Circuit-

Euler circuit is also known as Euler Cycle or Euler Tour.

- If there exists a Circuit in the connected graph that contains all the edges of the graph, then that circuit is called as an Euler circuit.

OR

- If there exists a walk in the connected graph that starts and ends at the same vertex and visits every edge of the graph exactly once with or without repeating the vertices, then such a walk is called as an Euler circuit.

OR

- An Euler trail that starts and ends at the same vertex is called as an Euler circuit.

OR

- A closed Euler trail is called as an Euler circuit.

