

 System consists of resources
 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
 Each resource type Ri has Wi instances.

Each process utilizes a resource as follows: Each process utilizes a resource as follows:
◦ request
◦ use
◦ release

 Mutual exclusion: only one process at a time can use a resource

 Hold and wait: a process holding at least one resource is waiting
to acquire additional resources held by other processes

 No preemption: a resource can be released only voluntarily by

Deadlock can arise if four conditions hold simultaneously. Necessary Conditions

 No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting
processes such that P0 is waiting for a resource that is held by P1,
P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting
for a resource that is held by Pn, and Pn is waiting for a resource
that is held by P0.

 V is partitioned into two types:
◦ P = {P1, P2, …, Pn}, the set consisting of all

the processes in the system

◦ R = {R1, R2, …, Rm}, the set consisting of all

A set of vertices V and a set of edges E.

◦ R = {R1, R2, …, Rm}, the set consisting of all
resource types in the system

 request edge – directed edge Pi Rj

 assignment edge – directed edge Rj Pi

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

 If graph contains no cycles no
deadlock

 If graph contains a cycle
◦ if only one instance per resource type, then

deadlock
◦ if several instances per resource type, ◦ if several instances per resource type,

possibility of deadlock

1. Ensure that the system will never enter a
deadlock state:

◦ Deadlock prevention

◦ Deadlock avoidence

2. Allow the system to enter a deadlock state and
then recover

3. Ignore the problem and pretend that deadlocks
never occur in the system; used by most
operating systems, including UNIX

 Mutual Exclusion – not required for sharable
resources (e.g., read-only files); must hold for
non-sharable resources

 Hold and Wait – must guarantee that whenever

Restrain the ways request can be made

 Hold and Wait – must guarantee that whenever
a process requests a resource, it does not hold
any other resources
◦ Require process to request and be allocated all its

resources before it begins execution, or allow process
to request resources only when the process has none
allocated to it.

◦ Low resource utilization; starvation possible

 No Preemption –
◦ If a process that is holding some resources

requests another resource that cannot be
immediately allocated to it, then all resources
currently being held are released

◦ Preempted resources are added to the list of ◦ Preempted resources are added to the list of
resources for which the process is waiting

◦ Process will be restarted only when it can regain
its old resources, as well as the new ones that it is
requesting

 No Preemption –
 Another method is…request resource
 Allocate if available
 If not check whether they are allocated to

other processes waiting for additional
resourceresource

 If so preempt from waiting process and
allocate to requesting process

 If no such waiting process is there
requesting process must wait and its
resources are preempted if other process
request them

 Circular Wait – impose a total ordering

of all resource types, and require that

each process requests resources in an each process requests resources in an

increasing order of enumeration

 Circular Wait

 Each process can request resource only in an
increasing order of enumeration.

 Ie process having Ri and it can request Rj only if
F(Rj)>F(Ri)

 Either it wont receive the resource or it releases Ri to
get Rj.

 Since F(R0) is always less than F(Rn) circular wait
condition wont occur.

 Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

 The deadlock-avoidance algorithm

Requires that the system has some additional a priori information
available

 The deadlock-avoidance algorithm
dynamically examines the resource-allocation
state to ensure that there can never be a
circular-wait condition

 Resource-allocation state is defined by the
number of available and allocated resources,
and the maximum demands of the processes

 When a process requests an available resource,
system must decide if immediate allocation
leaves the system in a safe state

 System is in safe state if there exists a sequence
<P1, P2, …, Pn> of ALL the processes in the
systems such that for each Pi, the resources
that P can still request can be satisfied by that Pi can still request can be satisfied by
currently available resources + resources held
by all the Pj, with j < I

 If a system is in safe state no
deadlocks

 If a system is in unsafe state
possibility of deadlock

 Avoidance ensure that a system
will never enter an unsafe state.

 Single instance of a resource type
◦ Use a resource-allocation graph

 Multiple instances of a resource type
◦ Use the banker’s algorithm

 Claim edge Pi Rj indicated that process Pj
may request resource Rj; represented by a
dashed line

 Claim edge converts to request edge when a
process requests a resource
Request edge converted to an assignment edge Request edge converted to an assignment edge
when the resource is allocated to the process

 When a resource is released by a process,
assignment edge reconverts to a claim edge

 Resources must be claimed a priori in the
system

 Suppose that process Pi
requests a resource Rj

 The request can be granted only
if converting the request edge
to an assignment edge does not
result in the formation of a result in the formation of a
cycle in the resource allocation
graph

 An algorithm that examines the state of the
system to determine whethera deadlock has
occurred

 An algorithm to recover from the deadlock

 Single instance resources - wait for graph
method for detection

Cycle in
Wait for graph indicates
deadlockdeadlock

 we can invoke the deadlock detection
algorithm every time a request for allocation
cannot be granted immediately.

 Invoking the deadlock-detection algorithm
for every resource request will incur
considerable overhead in computation time. A
less expensive alternative is simply to invoke
the algorithm at defined interval

 There are two options for breaking a
deadlock

 One is simply to abort one or more processes
to break the circular wait.

 The other is to preempt some resources from
one or more of the deadlocked processes.

 Abort all deadlocked processes
 Abort one process at a time until the

deadlock cycle is eliminated.

 Issues
◦ Selecting the victim
◦ Rollback
◦ Starvation

 No of rollbacks of the process need to be
recorded

