
8086 Architecture

By,
Hitha Paulson
Assistant Professor, Dept of Computer Science
LF College, Guruvayoor

PIN DIAGRAM

 16 bit processor
 40 pins
 Approximately

29000 transistors
 20 address pins
 Clock 5 MHz,8

MHz, 10 MHz
 1 Vcc , 2 ground
 16 control lines

8086 GENERAL ARCHITECTURE

REGISTER ORGANISATION OF 8086

 All registers are
16 bit

 General purpose :
 Can be used as 8 Can be used as 8

or 16 bit

 Special purpose :-
 Segment,

pointers, index

GENERAL DATA REGISTERS

 L & H – lower and
higher byte

 AX – Accumulator
CX – Default counter CX – Default counter

 BX – Offset storage
 DX – Implicit operand

or destination register

SEGMENT REGISTERS

 8086 addresses segmented
memory.

 The one mega byte memory(220)
that 8086 able to address is
divided into 16 logical segments
with 64Kbytes each
divided into 16 logical segments
with 64Kbytes each

 Four segment registers are there (
which stores the base addresss)
 Code segment Register
 Stack segment Register
 Data segment Register
 Extra segment Register

MEMORY SEGMENTS

Code segment
segment where executable program is

stored

Stack segmentStack segment
Store stack data

Data segment
Segment where data is resided

Extra segment
Another data segment

PHYSICAL ADDRESS CALCULATION

Procedure Example

WHERE IS THE OFFSET ?

 Any of the pointers, index registers or BX

contains the offset address depending upon the

addressing modeaddressing mode

OVERLAPPING & NON OVERLAPPING
SEGMENTS

 Non overlapping – separate physical address

 Overlapping – same physical address with
separate segment base and offset addressing
ie CS1+IP1 = CS2 + IP2ie CS1+IP1 = CS2 + IP2

ADVANTAGES OF SEGMENTED MEMORY

 Allow the memory capacity to be 1 mega byte even

though the address associated with individual

instructions are only 16 bits

 Allow the instruction , data or stack portion of a

program to be more than 64 k bytes long by using program to be more than 64 k bytes long by using

more code , data or stack segment

 Facilitate the use of separate memory areas for a

program , its data and the stack

 Permit a program/data to be put into different areas

of memory each time the program is executed

(relocation)

POINTERS AND INDEX REGISTERS

 IP,BP,SP offset of code ,data
and stack segment

 SI – to store the offset of
source data in the data source data in the data
segment

 DI - to store the offset of
destination data in the data
or extra segment

FLAG OR PSW

 Content indicates the result of computations in

the ALU. It also contains some flag bits to control

the CPU operation.

FLAGS

 Lower byte of the flag with overflow flag =

condition code flag register

 Higher byte = control flag register

FLAGS - DESCRIPTION

 S – Sign flag
 Set when any computation result is negative (MSB

bit)

 Z – Zero Flag
 Set when computation result is zero

 P – Parity flag
 Set when the lower byte of the result contains even Set when the lower byte of the result contains even

number of ones

 C – Carry flag
 Set when there is carry out of MSB in case of

addition or borrow in case of subtraction

 T – Trap flag
 If this flag is set the processor enters the single step

execution mode ie a trap interrupt is generated.

FLAGS - DESCRIPTION

 I – Interrupt Flag
 If this flag is set the maskable interrupts are

recognized by CPU

D – Direction Flag
 If this is zero, string is processed from lowest to

highest address (auto incrementing mode)highest address (auto incrementing mode)

AC – Auxiliary Carry flag
 Set if there is a carry from the lowest nibble

O – Overflow Flag
 Set if there is overflow, ie.. If the result of the signed

operation is large enough to be accommodated in the
destination register

6 byte Instruction queue

 The 6 byte queue is continually being filled
whenever the system bus is not needed for some
other operation

 This look ahead feature can significantly increase This look ahead feature can significantly increase
the CPU throughput

 If a branch is taken then the instruction queue is
flushed out.

 Instruction Pipelining

