
Packages and Interfaces

By,
Hitha Paulson
Assistant Professor, Dept. of Computer Science
LF College, Guruvayoor

What is Package

 Packages are containers for classes
 Package is both naming and visibility

control mechanism
 Classes defined within a package are not

accessible by the classes defined outside
the package

 Package helps to interact classes each
other and restrict to communicate with the
classes defined outside the package

Defining a Package

 Packages are defined by using package
command

 It should be the first statement in the program

 All the classes defined in that program will belong
to this package

 General Form

 package pkg_name;

 Java uses filesystem directories to store packages

 Package name is case-sensitive

 Packages can create as a hierarchy.

Finding Packages and CLASSPATH

The Location of packages can tell to the
compiler or Interpreter by

Java uses current working directory as starting-
point and hence subdirectory can act as
Package directory
Use environment variable CLASSPATH to
specify the package location
Compile and Run by using -classpath option
with command

Access Protection

 The way in which the members of class are
available outside the class

 Access specifiers and Packages are the means
for implementing Access Protection

 Different access specifiers makes class
members available in the following regions
 Subclass in the same package
 Non-subclass in the same Package
 Subclass in different packages
 Classes that are neither in the same package nor

subclasses

Access Protection contd..

 The main access specifiers are
 Private, public, protected and Non-modifier

(FRIENDLY)

 Class can have two access specifiers: public and
default
 Public class can access anywhere
 Default class can access only in same package

Access Protection Table

YesNoNoNo
Different package

Non-subclass

YesYesNoNo
Different Package

Subclass

YesYesYesNo
Same Package Non-

Subclass

YesYesYesNo
Same Package

Subclass

Yes

Public

Yes

Protected

Yes

No

Modifier
Yes

Private

Same Class

Importing Packages

 All the built-in and user-defined classes are stored in
named Packages

 In order to refer a particular class, it is required to use
its fully qualified classname
 Eg: java.io.DataInputStream

 Import statement is used to bring certain classes or
entire packages into visibility

 Imported classes can refer without prefixing package
name

 Import statement is using after Package statement and
before class definition

 General Form
 import pkg1.[pkg2].(classname | *) ;

 If more than one package contains classes of same
name, it is required to use full qualified classname

Interfaces

 Interface is a special type of class designed for
inheritance

 An interface is a complete abstract class having final
variables and abstract methods

 Interfaces are designed to support dynamic method
resolution at runtime

 Interfacesareinheritedbyusing“implements”instead
of“extends”

 The subclasses inherited from interface should redefine
all the abstract methods in interface

 Interfaces helps to implement multiple inheritance

Interfaces contd . . .

General Format
access_specifier interface interface_name
{

return-type method_name1(param-list);
return-type method_name2(param-list);
type final_var1 = value;
type final_var2 = value;

//
}

Implementing Interfaces

 To implement an interface, include the implements
clause in a class definition

 General Format
class class_name [extends superclass] [implements

interface1 [,interface2,]
{
//class body
//definition of methods in interface
}

 Methods that implements an interface must be declared
as public

Interface Reference variables

 The methods defined in an interface can also invoke by
using reference variables of Interface. [Idea of dynamic
method despatch]

 Reference variables must be initialized by using object
of implemented class

 But the other members of the implemented class cannot
be invoked by this object reference

 Any implementing class declared as abstract can leave
the methods in Interface redefined. This type of
implementations are called partial Implementation

 An Interface can be extended from another Interface.
Here the implementing class must override all the
methods defined in the inheritance chain.

