Packages and Interfaces

By

Hitha Paulson
Assistant Professor, Dept. of Computer Science
LF College, Guruvayoor

What I1s Package

¢ Packages are containers for classes

¢ Package Is both naming and visibllity
control mechanism

¢ Classes defined within a package are not
accessible by the classes defined outside
the package

¢ Package helps to interact classes each
other and restrict to communicate with the
classes defined outside the package

Defining a Package

¢ Packages are defined by using package
command

¢ It should be the first statement in the program

¢ All the classes defined in that program will belong
to this package

¢ General Form

¢ package pkg name;
¢ Java uses filesystem directories to store packages
¢ Package name is case-sensitive
¢ Packages can create as a hierarchy.

Finding Packages and CLASSPATH

+ The Location of packages can tell to the

compiler or Interpreter by

Java uses current working directory as starting-
point and hence subdirectory can act as
Package directory

® Use environment variable CLASSPATH to
specify the package location

+ Compile and Run by using -classpath option
with command

Access Protection

» The way in which the members of class are
available outside the class

> Access specifiers and Packages are the means
for implementing Access Protection

> Different access specifiers makes class

members available in the following regions

€ Subclass in the same package

€ Non-subclass in the same Package

€ Subclass In different packages

® Classes that are neither in the same package nor
subclasses

Access Protection contd..

» The main access specifiers are

€ Private, public, protected and Non-modifier
(FRIENDLY)

» Class can have two access specifiers: public and

default
€ Public class can access anywhere
€ Default class can access only in same package

Access Protection Table

Private | No Protected |Public
I. [.

Same Class Yes Yes Yes Yes
Same Package No Yes Yes Yes
Subclass

Same Package Non- No Yes Yes Yes
Subclass

Different Package |\, No Yes Yes
Subclass

Different package No No No Yes
Non-subclass

Importing Packages

¢ All the built-in and user-defined classes are stored in
named Packages

¢ In order to refer a particular class, it Is required to use
its fully qualified classname

¢ Eg:java.io.DatalnputStream
Import statement is used to bring certain classes or
entire packages into visibility

Imported classes can refer without prefixing package
name

Import statement is using after Package statement and
before class definition

General Form

¢ import pkgl.[pkg2].(classname | *) ;

¢ |If more than one package contains classes of same
name, it Is required to use full qualified classname

o ¢ 22 o

Interfaces

¢ Interface Is a special type of class designed for
Inheritance

¢ An interface is a complete abstract class having final
variables and abstract methods

¢ Interfaces are designed to support dynamic method
resolution at runtime

¢ Interfaces are inherited by using “implements” instead
of “extends”

¢ The subclasses inherited from interface should redefine
all the abstract methods in interface

¢ Interfaces helps to implement multiple inheritance

Interfaces contd . . .

General Format
access_specifier interface interface _name

{

return-type method_namel(param-list);

return-type method name2(param-list);
type final varl = value;
type final var2 = value;

Implementing Interfaces

¢ To implement an interface, include the implements
clause In a class definition

¢ General Format
class class name [extends superclass] [implements

Interfacel [,interface2,]

{
//class body

/Idefinition of methods In Iinterface

}

¢ Methods that implements an interface must be declared
as public

Interface Reference variables

¢ The methods defined in an interface can also invoke by
using reference variables of Interface. [Idea of dynamic
method despatch]

¢ Reference variables must be initialized by using object
of Implemented class

¢ But the other members of the implemented class cannot
be invoked by this object reference

¢ Any implementing class declared as abstract can leave
the methods in Interface redefined. This type of
Implementations are called partial Implementation

¢ An Interface can be extended from another Interface.
Here the implementing class must override all the
methods defined In the inheritance chain.

