
Packages and Interfaces

By,
Hitha Paulson
Assistant Professor, Dept. of Computer Science
LF College, Guruvayoor

What is Package

 Packages are containers for classes
 Package is both naming and visibility

control mechanism
 Classes defined within a package are not

accessible by the classes defined outside
the package

 Package helps to interact classes each
other and restrict to communicate with the
classes defined outside the package

Defining a Package

 Packages are defined by using package
command

 It should be the first statement in the program

 All the classes defined in that program will belong
to this package

 General Form

 package pkg_name;

 Java uses filesystem directories to store packages

 Package name is case-sensitive

 Packages can create as a hierarchy.

Finding Packages and CLASSPATH

The Location of packages can tell to the
compiler or Interpreter by

Java uses current working directory as starting-
point and hence subdirectory can act as
Package directory
Use environment variable CLASSPATH to
specify the package location
Compile and Run by using -classpath option
with command

Access Protection

 The way in which the members of class are
available outside the class

 Access specifiers and Packages are the means
for implementing Access Protection

 Different access specifiers makes class
members available in the following regions
 Subclass in the same package
 Non-subclass in the same Package
 Subclass in different packages
 Classes that are neither in the same package nor

subclasses

Access Protection contd..

 The main access specifiers are
 Private, public, protected and Non-modifier

(FRIENDLY)‏

 Class can have two access specifiers: public and
default
 Public class can access anywhere
 Default class can access only in same package

Access Protection Table

YesNoNoNo
Different package

Non-subclass

YesYesNoNo
Different Package

Subclass

YesYesYesNo
Same Package Non-

Subclass

YesYesYesNo
Same Package

Subclass

Yes

Public

Yes

Protected

Yes

No

Modifier
Yes

Private

Same Class

Importing Packages

 All the built-in and user-defined classes are stored in
named Packages

 In order to refer a particular class, it is required to use
its fully qualified classname
 Eg: java.io.DataInputStream

 Import statement is used to bring certain classes or
entire packages into visibility

 Imported classes can refer without prefixing package
name

 Import statement is using after Package statement and
before class definition

 General Form
 import pkg1.[pkg2].(classname | *) ;

 If more than one package contains classes of same
name, it is required to use full qualified classname

Interfaces

 Interface is a special type of class designed for
inheritance

 An interface is a complete abstract class having final
variables and abstract methods

 Interfaces are designed to support dynamic method
resolution at runtime

 Interfaces‏are‏inherited‏by‏using‏“implements”‏instead‏
of‏“extends”

 The subclasses inherited from interface should redefine
all the abstract methods in interface

 Interfaces helps to implement multiple inheritance

Interfaces contd . . .

General Format
access_specifier interface interface_name
{

return-type method_name1(param-list);
return-type method_name2(param-list);
type final_var1 = value;
type final_var2 = value;

//
}

Implementing Interfaces

 To implement an interface, include the implements
clause in a class definition

 General Format
class class_name [extends superclass] [implements

interface1 [,interface2,]
{
//class body
//definition of methods in interface
}

 Methods that implements an interface must be declared
as public

Interface Reference variables

 The methods defined in an interface can also invoke by
using reference variables of Interface. [Idea of dynamic
method despatch]

 Reference variables must be initialized by using object
of implemented class

 But the other members of the implemented class cannot
be invoked by this object reference

 Any implementing class declared as abstract can leave
the methods in Interface redefined. This type of
implementations are called partial Implementation

 An Interface can be extended from another Interface.
Here the implementing class must override all the
methods defined in the inheritance chain.

