
Subject : JAVA PROGRAMMING

SAVIYA VARGHESE

Dept of BCA

2020-21



�What is JDBC?

JDBC stands for Java Database Connectivity,

which is a standard Java API for database-

independent connectivity between the Java

programming language and a wide range of

databases.



 API (Application programming interface) is a

document that contains a description of all

the features of a product or software.

 It represents classes and interfaces that

software programs can follow to

communicate with each other.

 An API can be created for applications,

libraries, operating systems, etc.



 Before JDBC, ODBC API was the database API

to connect and execute the query with the

database.

 But, ODBC API uses ODBC driver which is

written in C language (i.e. platform

dependent and unsecured).

 That is why Java has defined its own API

(JDBC API) that uses JDBC drivers (written in

Java language).



� The JDBC library includes APIs for each of

the tasks mentioned below that are

commonly associated with database usage.

 Making a connection to a database.

 Creating SQL or MySQL statements.

 Executing SQL or MySQL queries in the

database.

 Viewing & Modifying the resulting records.





� The JDBC API supports both two-tier and

three-tier processing models for database

access but in general, JDBC Architecture

consists of two layers −

 JDBC API: This provides the application-to-

JDBC Manager connection.

 JDBC Driver API: This supports the JDBC

Manager-to-Driver Connection.



� The JDBC API uses a driver manager and

database-specific drivers to provide

transparent connectivity to heterogeneous

databases.

� The JDBC driver manager ensures that the

correct driver is used to access each data

source.

� The driver manager is capable of supporting

multiple concurrent drivers connected to

multiple heterogeneous databases.





Common JDBC Components

� The JDBC API provides the following interfaces 

and classes −

� DriverManager

� Driver

� Connection

� Statement

� ResultSet

� SQLException



 This class manages a list of database

drivers.

 Matches connection requests from the java

application with the proper database driver

using communication sub protocol.

 The first driver that recognizes a certain

subprotocol under JDBC will be used to

establish a database Connection.



 This interface handles the communications

with the database server.

 Instead of direct interaction with Driver

objects ,we use Driver Manager objects,

which manages objects of this type.

 It also abstracts the details associated with

working with Driver objects.



 This interface with all methods for

contacting a database.

 The connection object represents

communication context, i.e., all

communication with database is through

connection object only.



 We use objects created from this interface 

to submit the SQL statements to the 

database.

 Some derived interfaces accept parameters 

in addition to executing stored procedures.



ResultSet:

 These objects hold data retrieved from a

database after you execute an SQL query using

Statement objects.

 It acts as an iterator to allow you to move

through its data.

SQLException:

 This class handles any errors that occur in a 

database application



� The JDBC architecture consists of two-tier and three-tier

processing models to access a database.

1.Two-tier model:

� A java application communicates directly to the data source.

The JDBC driver enables the communication between the

application and the data source.

When a user sends a query to the data source, the answers

for those queries are sent back to the user in the form of

results.

The data source can be located on a different machine on a

network to which a user is connected. This is known as

a client/server configuration, where the user’s machine

acts as a client and the machine having the data source

running acts as the server.





� Three-tier model:

In this, the user’s queries are sent to middle-tier

services, from which the commands are again sent to

the data source.

The results are sent back to the middle tier, and from 

there to the user.

This type of model is found very useful by management

information system directors





� What is JDBC Driver?

JDBC drivers implement the defined

interfaces in the JDBC API, for interacting

with your database server.

� For example, using JDBC drivers enable you

to open database connections and to interact

with it by sending SQL or database commands

then receiving results with Java.



� The Java.sql package that ships with JDK,

contains various classes with their behaviours

defined and their actual implementaions are

done in third-party drivers.

� Third party vendors implements

the java.sql.Driver interface in their

database driver.



� JDBC driver implementations vary because of 

the wide variety of operating systems and 

hardware platforms in which Java operates. 

� Sun has divided the implementation types 

into four categories, Types 1, 2, 3, and 4

� Type 1: JDBC-ODBC Bridge Driver

� Type 2: JDBC-Native API

� Type 3: JDBC-Net pure Java

� Type 4: Direct to Database Pure Java Driver



� In a Type 1 driver, a JDBC bridge is used to access

ODBC drivers installed on each client machine.

� Using ODBC, requires configuring on your system a

Data Source Name (DSN) that represents the target

database.

� When Java first came out, this was a useful driver

because most databases only supported ODBC access

but now this type of driver is recommended only for

experimental use or when no other alternative is

available.

� The JDBC-ODBC Bridge that comes with JDK 1.2 is a

good example of this kind of driver





� In a Type 2 driver, JDBC API calls are converted into
native C/C++ API calls, which are unique to the
database.

� These drivers are typically provided by the database
vendors and used in the same manner as the JDBC-
ODBC Bridge.

� The vendor-specific driver must be installed on each
client machine.

� If we change the Database, we have to change the
native API, as it is specific to a database and they are
mostly obsolete now, but you may realize some speed
increase with a Type 2 driver, because it eliminates
ODBC's overhead.

� The Oracle Call Interface (OCI) driver is an example
of a Type 2 driver.





� In a Type 3 driver, a three-tier approach is used to

access databases.

� The JDBC clients use standard network sockets to

communicate with a middleware application server.

� The socket information is then translated by the

middleware application server into the call format

required by the DBMS, and forwarded to the database

server.

� This kind of driver is extremely flexible, since it

requires no code installed on the client and a single

driver can actually provide access to multiple databases





� In a Type 4 driver, a pure Java-based driver

communicates directly with the vendor's database

through socket connection.

� This is the highest performance driver available for the

database and is usually provided by the vendor itself.

� This kind of driver is extremely flexible, you don't

need to install special software on the client or

server.Further, these drivers can be downloaded

dynamically.

� MySQL's Connector/J driver is a Type 4 driver.

Because of the proprietary nature of their network

protocols, database vendors usually supply type 4

drivers





� If you are accessing one type of database, such as

Oracle, Sybase, or IBM, the preferred driver type is 4.

� If your Java application is accessing multiple types of

databases at the same time, type 3 is the preferred

driver.

� Type 2 drivers are useful in situations, where a type 3

or type 4 driver is not available yet for your database.

� The type 1 driver is not considered a deployment-level

driver, and is typically used for development and

testing purposes only.



ADVANTAGES

� easy to use.

� can be easily connected to any database.

Disadvantages:

� Performance degraded because JDBC method 

call is converted into the ODBC function 

calls.

� The ODBC driver needs to be installed on the 

client machine.



Advantage:

� performance upgraded than JDBC-ODBC 

bridge driver.

Disadvantage:

� The Native driver needs to be installed on 

the each client machine.

� The Vendor client library needs to be 

installed on client machine.



� Advantage:

� No client side library is required because of 
application server that can perform many tasks 
like auditing, load balancing, logging etc.

� Disadvantages:

� Network support is required on client machine.

� Requires database-specific coding to be done in 
the middle tier.

� Maintenance of Network Protocol driver becomes 
costly because it requires database-specific 
coding to be done in the middle tier.

�



� Advantage:

� Better performance than all other drivers.

� No software is required at client side or 

server side.

� Disadvantage:

� Drivers depend on the Database.


