NEWTON'S SECOND LAW

FRITTY P F
DEPARTMENT OF PHYSICS
MECHANICS 1 -FIRST SEMESTER
2021

Newton's Second Law

Force equals mass times acceleration.

$$
F=m a
$$

Acceleration: a measurement of how quickly an object is changing speed.

Acceleration

- An unbalanced force causes something to accelerate.
- A force can cause motion only if it is met with an unbalanced force.
- Forces can be balanced or unbalanced.
- Depends on the net force acting on the object
- Net force $\left(\mathbf{F}_{\text {net }}\right)$: The sum total and direction of all forces acting on the object.
- Net forces: Always cause acceleration.

Balanced Versus Unbalanced

Balanced Versus Unbalanced

Unbalanced forces
 cause acceleration.

What does $\mathrm{F}=\mathrm{ma}$ mean?

Force is directly proportional to mass and acceleration. Imagine a ball of a certain mass moving at a certain acceleration. This ball has a certain force.

Now imagine we make the ball twice as big (double the mass) but keep the acceleration constant. F = ma says that this new ball has twice the force of the old ball.

Now imagine the original ball moving at twice the original acceleration. $\mathrm{F}=$ ma says that the ball will again have twice the force of the ball at the original acceleration.

In Other Words...

Small Force = Small Acceleration

In Other Words...

Large Force = Large Acceleration

So....if you push twice as hard, it accelerates twice as much.

But there is a twist....

- Acceleration is INVERSELY related to the mass of the object.

In other words.....using the same amount of force....

What does F = ma say?

$\mathrm{F}=$ ma basically means that the force of an object comes from its mass and its acceleration.

Force is measured in
Newtons $(\mathbb{N})=$ mass $(\mathrm{kg}) \mathrm{x}$ acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
Or

$$
\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2}
$$

1 Newton $=1 \mathrm{~kg}{ }^{*} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

High Mass

Something very massive (high mass) that's changing speed very slowly (low acceleration), like a glacier, can still have great force.

Low Mass

Something very small (low mass) that's changing speed very quickly (high acceleration), like a bullet, can still have a great force. Something very small changing speed very slowly will have a very weak force.

In Summary

- The acceleration of an object is directly proportional to the net force \& inversely proportional to its mass.

$F=m a$
Force $=$ Møss \times Acceleration

How Does Weight Tie In?

- Mass is the quantity of matter in an object. More specifically, mass is a measure of the inertia, or "laziness," that an object exhibits in response to any effort made to start it, stop it, or otherwise change its state of motion.
- Weight is the force of gravity on an object.
- If force is equal to mass x acceleration then, Weight is equal to mass x acceleration due to gravity

Weight

- So on earth, your weight is
- Your Mass x 9.8 m/s/s
- When you are drawing FBDs and the force of gravity factors i (almost a/ways), you can figure out the value of that force
- For example, if I say a 2 kg book is resting on a table...
- The force due to gravity (weight) is 2×9.8

The normal force would be the same but opposite direction

