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SUMMARY OF THE PROJECT 
     The fundamental area of Probability Theory attracted many researchers.One important aspect 

of Probability Theory is to provide  probability distributions to random variables defined over 
uncertain situations.Scientists in the field of probability distributions introduced numerous 
distributions like binomial, Poisson,exponential, geometric etc. Among them, normal distribution, 
the most important provides the best fit in many types of real life data and,in a number of problems, 
the limiting distribution is normal. One important parametric family among life distributions is the 
exponential distribution, which plays a central role within the class of all life distributions.There 
are numerous situations where the exponential law is unsuitable to model. Recently much effort 
has been focused on the study of distributions that are heavy tailed as compared to exponential 
distribution. Pillai (1990) introduced Mittag –Leffler  distribution as a generalization to 
exponential distribution.The data consisting of commodity prices, daily stock returns, foreign 
currency exchange rates and other financial data can  adequately  modeled using Mittag-Leffler 
distribution. 

 
        The    Mittag-Leffler function was  introduced by Swedish Mathematician Gosta Mittag-
Leffler in 1903 (see, Mittag-Leffler(1903)) in connection with his method  of summations  of 
some divergent series.The function ܧఈ (u) = ∑ ௨ೖ

(ଵା ఈ௞)∞௞ୀ଴  , u ∈ (0,∞) is known as Mittag Leffler 
function. It  arises as the solution of certain boundary value problems involving  fractional 
differential equation. During the various developments of  fractional  calculus in the last two 
decades,  this function has gained importance and popularity on account of its vast applications 
in the field of Science and technology (see, Mathai (2010)  and Pillai (1990)). 
            Feller (1971) showed that the Laplace transform of ܧఈ(−ݔఈ) for 0 ≤ ߙ ≤1 is ഀషభ

ଵାഀ ,  ≥
0. But ܧఈ(−ݔఈ) is not a probability distribution. Pillai (1990)  showed that ܨఈ (x) = 1- ܧఈ(−ݔఈ) 
is a distribution function. Hence he named ܨఈ (x) as Mittag- Leffler  (ML) distribution. We have  
∑ = ఈ (x)ܨ (ିଵ)ೖషభ௫ഀೖ

(ଵାఈ௞)
∞௞ୀଵ  , 0< ߙ ≤ 1, x≥ 0 and the corresponding density function is ఈ݂ (x) = 

∑ (ିଵ)ೖషభ௫ഀೖషభ
(ఈ௞)

∞௞ୀଵ . 



           The  report of the project is presented in five chapters. The first Chapter is Introduction and 
presents  the need  worthy materials for subsequent discussions. Univariate continuous  ML 
distribution  and its various properties are reviewed in Chapter 2. Also, we review the  literature 
on generalized Mittag-Leffler, semi-Mittag-Leffler and geometric Mittag-Leffler distributions.  
The review is based on the works of Pillai (1990), Jayakumar and Pillai (1993,1996), Pillai and  
Jayakumar  (1994), Jayakumar and Suresh (2003), Jayakumar and Ajitha (2003),  Jose et al. (2010),  
Mathai (2010), Lin (1998, 2001)  and Hulliet (2016). 
            A discrete analogue of ML distribution, namely Discrete Mittag-Leffler (DML) 
distribution was introduced and studied by Pillai and  Jayakumar (1995). In Chapter 3,we review 
the mathematical origin and properties of DML distribution. Another discrete analogue of ML 
distribution was recently  introduced by Chakraborty and Ong (2017). Various aspects of this 
distribution,  known as, Mittag-Leffler  Function  Distribution(MLFD) is also  reviewed in this 
Chapter.  Note  that the MLFD is a generalization of Poisson distribution. For details, see  
Mariamma (2018). In this Chapter, we also review the literature on discrete geometric Mittag-
Leffler distribution introduced and studied in Jayakumar and Ajitha (2003).  
             In  Chapter 4,we review various aspects of bivariate ML and bivariate DML distributions. 
The discussion  in this Chapter is based on  Jayakumar  and Mundassery (2006),  Mundassery  and   
Jayakumar(2006)  and  Jayakumar et al. (2010). 
           Finally,   in  Chapter 5,we present  applications  of  ML and  DML distributions  in various  
areas, especially in autoregressive time series modeling. The   discussion in  this Chapter  is  based 
on Jose et al. (2010), Weron  and  Kotulski(1996),  Jayakumar(2003), Mathai (2010),  Chakraborty 
and Ong (2017) and  Mariamma (2017, 2018).  
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