DOUBLE REFRACTION

LALY A.S. ASST. PROFESSOR DEPT. OF PHYSICS LITTLE FLOWER COLLEGE GURUVAYOOR

Isotropic Materials	Anisotropic Materials
Atoms are arranged in a regular periodic manner	The arrangement of atoms are differs in different directions within a crystal .
When a light beam incident on this type of materials, it refracts a single ray	When light beam incident on these crystals it undergoes double refraction.
Refractive index will be same in all directions	Refractive index vary with directions
eg: glass,air,water	eg: Calcite, Mica, Quartz

- When a beam of ordinary light is passed through certain crystals, the refracted ray splits into two rays. This phenomena of splitting of a light ray into two refracted rays is called double refraction or birefringence.
- One of these rays obey snell's law of refraction and is called ordinary ray(o-ray).
 The other which do not obey snell's law of refraction is called extra ordinary ray(e-ray).

Properties of e-ray and o-ray

Ordinary ray	Extra ordinary ray
Plane polarised. Plane of polarisation is perpendicular to the plane of polarisation of e ray	Plane polarised. Plane of polarisation is perpendicular to the plane of polarisation of o ray
Within a crystal ,o ray travels at the same speed in all directions.	E ray travels at different speed in different directions
Refractive index of the crystal for o ray is constant.	Refractive index is different in different directions.
Wavefront is spherical	Wavefront is ellipsoidal

- Birefringence: The difference between refractive indices of extraordinary ray and ordinary ray(μ_e μ_o)
- Optic axis: The direction within a doubly refracting crystal along which the o ray and e ray have same velocity is called optic axis.
 If there is only one optic axis in a crystal ,it is called uniaxial crystal(Calcite,Quartz) whereas in biaxialcrystals(Mica) there are two optic axes.

Uniaxial crystals are divided into two

Positive crystals	Negative crystals
Refractive index of e ray is gretaer $\mu_{e} > \mu_{o}$	Refractive index of o ray is greater $\mu_{o>}\mu_{e}$
Velocity of o ray is greater $v_{o>}v_{e}$	Velocity of e ray is greater v _e >v _o
Birefringence is positive	Birefringence is negative
Ellipsoidal wavefront of e ray within the spherical wavefront of o ray.	Spherical wavefront of o ray is within the ellipsoidal wavefront of e ray

THANK YOU...