

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	SEMICONDUCTOR PHYSICS AND ELECTRONICS						
Type of Course	Minor (SET III: SI	EMICONDU	JCTOR PHY	YSICS)			
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	 Basic understandinand calculus. Familiarity with full 						
Course	This course covers	fundamenta	l concepts ir	electronics,	focusing on		
Summary	both theoretical und	erstanding a	nd practical a	applications.	The syllabus		
	includes topics such	n as atomic	models, semi	iconductor ph	ysics, diode		
	and transistor circuits, voltage stabilization, amplifiers, and digital						
	electronics. The course aims to equip students with the necessary						
	knowledge and skills to analyze, design, and troubleshoot electronic						
	circuits.						

Course Outcomes (CO):

CO	CO Statement	Cogniti	Knowledg	Evaluation
		ve	e	Tools used
		Level*	Category#	
CO1	Master the energy band structure of	U	F	Instructor-crea
	semiconductors, differentiate between			ted exams /
	intrinsic and extrinsic semiconductors, grasp			Quiz
	majority and minority carrier concepts, and			
	proficiently analyse pn junctions.			
CO2	Analyse diode rectifiers and filtering	U & An	С	Practical
	circuits, understand transistor basics and			Assignment /
	various configurations and load line analyse			Observation of
				Practical Skills
CO3	Gain insight into voltage stabilisation using	U, Ap	Р	Seminar
	Zener diodes. Design and understand the	& C		Presentation /
	working of CE amplifiers. Get introduced to			Group Tutorial
	operational amplifiers.			Work
CO4	Understand Boolean algebra basics, the	U & Ap	С	Instructor-crea
	functioning of OR, AND, NOT gates, and			ted exams /
	the fundamental theorems. Master truth			Home
	tables, symbolic representation, universal			Assignments
	gates, XOR gates and adder circuits.			
CO6	Practical session will help in understanding	Ap & C	М	One Minute
	the working of pn junction diode,			Reflection
	transistors. Will comprehend the working of			Writing
	logic gates in digital electronics			assignments
* - Rei	member (R), Understand (U), Apply (Ap), Ana	lyse (An),	Evaluate (E),	Create (C)
# - Fac	ctual Knowledge (F) Conceptual Knowledge (C	C) Procedur	al Knowledge	e (P)
Metac	ognitive Knowledge (M)			

Detailed Syllabus:

Modul	Uni	Content	Hrs	Mar
e	t		(45+	ks
			30)	70
Ι		Semiconductor Physics	8	12
	1	Bohr's atomic model and energy levels, Energy bands and classification of solids, silicon	2	
	2	Semiconductors and the influence of temperature	1	
	3	Intrinsic and extrinsic semiconductors, n type and p type, majority and minority carriers	2	
	4	pn junction and its properties	2	
	5	Biasing of junction	1	
		Sections 4.1 - 4.6 of chapter 4, sections 5.1 - 5.20 of chapter 5, Book 1		
II		Analog Electronics	16	25
	6	Diode as rectifiers- half wave and full wave- Efficiency and ripple factor calculations	6	
	7	Filter circuits	2	
	8	Introduction to transistor and its action	2	
	9	Transistor configurations- CE in detail (CB and CC as comparison with CE)	3	
	10	Load line analysis and operating point	2	
	11	Testing of transistor	1	
		Sections: 6.2,6.3, 6.6-6.21 (excluding 6.16) of chapter 6, sections 8.1- 8.22, (Excluding 8.11) (Derivation of expression of Ic may be avoided in CE, CB and CC), 8.27 of chapter 8, Book 1		

		Voltage stabiliser and amplifier	13	21
Ш	12	Zener diode, voltage stabilisation, equivalent circuit of zener diode, zener diode as voltage stabilizer.	3	
	13	Faithful amplification, transistor biasing, inherent variations in transistor parameters, stabilization, voltage divider bias method	3	
	14	Designing of transistor biasing circuits, Mid - point biasing	1	
	15	CE amplifier – circuit, working, phase reversal, frequency response, voltage gain.	3	
	16	Operational amplifier: basic operation, inverting and noninverting modes, voltage follower.	2	
	17	Summing amplifier, applications of summing amplifiers	1	
		Sections: 6.24-6.28 of chapter 6, 9.1-9.5, 9.12, 9.14-9.15 of chapter 9, 10.1-10.5 of chapter 10, 11.3-11.4, of chapter 11, 25.15- 25.17, 25.22-25.24, 25.26, 25.27, 25.32 - 25.33 of chapter 25, Book 1		
IV		Digital Electronic	8	12
	18	Basic logic gates	3	
	19	Combination gates and XOR gates	1	
	20	Boolean Algebra and Boolean theorems	2	
	21	De Morgan's theorems	1	
	22	Electronic adder circuits	1	
		Sections: 26.11-26.17, 26.20-26.22, 26.32 of chapter 26, Book 1		
V		PRACTICALS	30	
	decid exper	Luct any 5 experiments from the given list and 1 additional experiment, led by the teacher-in-charge, related to the content of the course. The 6^{th} riment may also be selected from the given list. Other experiments listed may be used as demonstrations of the concepts taught in the course.		

1	Study the V-I characteristics of diodes.
	• Characteristics of Ge/Si diodes, and LEDs.
	• ExpEYES may be used.
	https://expeyes.in/experiments/electronics/diodeIV.html
	• Optional: Plot and fit the experimental data with the diode
	equation in GeoGebra or any other application and calculate
	the value of the ideality factor of the PN junction.
2	Study the characteristics of Zener diode and construct a voltage
	regulator.
	• Study the V-I characteristics of zener diode and hence
	determine the breakdown voltage.
	• <u>https://expeyes.in/experiments/electronics/zenerIV.html</u>
	• Construct a voltage regulator using a zener diode and
	determine the percentage of voltage regulation.
3	Construction of the center tapped full wave rectifiers and
	regulated power supply.
	• Construct a center tapped full wave rectifier without filter and
	with a filter.
	• Connections may be realized through soldering, to get an
	experience of soldering.
	• Measure the AC and DC voltages using a multimeter and
	calculate the ripple factor without and with a filter.
	• Observe the variation of the ripple factor with load resistance,
	when filter is used.
	• Optional: Construct 5V/12V regulated power supply using
	78XX IC.
4	Transistor input, output & transfer characteristics in CE

	Draw the static characteristics of the transistor in common
	emitter configuration and calculate input/output resistance and
	the current gain.
	• ExpEYES may be used
	https://expeyes.in/experiments/electronics/npn.html
5	Construction of CE transistor amplifier and the study of
	frequency response
	• Design a CE transistor amplifier of a given gain (mid-gain)
	using voltage divider bias.
	• Study the frequency response and find the bandwidth.
6	Operational Amplifier –inverting, non inverting amplifier and
	voltage follower.
	• Design inverting and non inverting amplifiers of different
	voltage gain.
	• Measure and verify the gain using CRO/ExpEYES.
	• Construct a voltage follower and verify that the gain is unity.
7	Operational Amplifier- adder, subtractor
	• Design arithmetic circuits(adder and subtractor) using OP
	AMP, with two input voltages and measure the result using
	multimeter/CRO/ExpEYES.
8	Construction of basic gates using diodes (AND, OR) & transistor
	(NOT)
	• Realize the logic AND and OR gates using diodes and NOT
	gate using a transistor and verify the truth table. Logic output
	can be checked using a multimeter or LED.
9	Construct Half adder using universal gates and study the
	operation.
	• Implement half adder using NAND/NOR gates and verify the
	truth table for each input/output combination.
10	Verification of De-Morgan's Theorems using basic gates.

_		
	• Realize the either side of the De-Morgan's Theorems using	
	gates from appropriate ICs and verify the truth table for each	
	input/output combination.	
11	Acceleration of a Freely Falling Body	
	• Use the smartphone acoustic stopwatch to determine the	
	duration of a free fall.	
	 Measure the time of flight of a steel ball for different heights 	
	and plot a graph of distance vs. time squared (s vs. t ²).	
	Determine g from the graph.	
	• Experiment 2 of Book 2.	
	• Phyphox app may be used.	
	https://phyphox.org/experiment/free-fall-2/	
	OR	
	• Use ExpEyes kit, electromagnet, and contact sensor to	
	determine the duration of a free fall.	
	https://expeyes.in/experiments/mechanics/tof.html	
12	Verification of the Relation of Angular Velocity and Centrifugal	
	Acceleration	
	• Use the smartphone gyroscope and the accelerometer.	
	• Attach the smartphone to some rotating arrangements and	
	record the data from the gyroscope and accelerometer.	
	• Plot angular velocity Vs acceleration and verify the relation.	
	• Experiment 18 of Book 2.	
	• Phyphox app may be used.	
	https://phyphox.org/experiment/centrifugal-acceleration/	
13	Analysis of Bouncing Balls to Determine Gravitational	
	Acceleration and Coefficient of Restitution.	
	• After doing the experiment, the student should be able to	
	understand the concept of inelastic collision.	

Measure the time interval between successive bounces using a	
digital acoustic stopwatch and hence calculate g and	
coefficient of restitution	
 Experiment 12 of Book 2 	
 Phyphox app may be used. 	
https://phyphox.org/experiment/inelastic-collision/	
14 Analysis of Air Resistance and Terminal Speed to Determine the	
Drag Coefficient.	
• Record the motion of a light weight paper cup and analyse it	
with Tracker tool (<u>https://physlets.org/tracker/</u>).	
Plot acceleration, velocity, and position with time.	
• Repeat the experiment with different mass (by simply stacking	
the paper cups)	
Determine the Drag Coefficient	
• Experiment 27 of Book 2.	
• <u>https://www.youtube.com/watch?v=iujzK3uH1Yc</u>	
15 Projectile Motion: Energy Conservation	
• Analyse the motion of the tossing ball/ projectile in the Tracker	
tool.	
• Plot time Vs the x-and y-components of velocity and	
acceleration.	
• Also plot the kinetic energy, potential energy (build data using	
define tool) and total energy.	
 <u>https://www.youtube.com/watch?v=x0AWRLvgB28</u> 	
 https://www.youtube.com/watch?v=i07HeUWo8xc 	
Books and References:	

1. V K Mehta and Rohit Mehta -Principles of electronics (Book 1)

- Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)
- 3. <u>https://phyphox.org/</u>
- 4. <u>https://physlets.org/tracker/</u>
- 5. 3. Digital principles and applications Leach and Malvino (Tata McGraw Hill)
- 6. Electronic Principles by Malvino (Tata McGraw Hill)
- 7. Digital Computer Fundamentals (Thomas. C. Bartee)

- 8. Physics of Semiconductor Devices- Second Edition Dilip K Roy Universities Press
- 9. Digital Fundamentals Thomas L Floyd Pearson Education
- 10. The Art of Electronics-Paul Herowitz & Winfield Hill

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO4	PS	PS	PO1	PO2	PO3	PO4	PO5	PO	PO
	1	2	3		05	06						6	7
CO 1	3	2	3	0	2	1	3	1	1	0	2	3	0
CO 2	2	1	1	1	2	1	2	2	2	1	2	3	0
CO 3	2	3	2	1	1	2	2	3	2	1	2	3	0
CO 4	0	2	1	0	0	0	1	1	1	0	2	3	0
CO 5	1	1	2	0	2	2	2	2	3	1	3	3	0
CO 6	2	2	1	0	2	2	2	2	2	1	3	3	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignm	Practical Skill	End Semester
	Practical Exam	ent /Viva	Evaluation	Examinations
CO 1	1	1		✓
CO 2	1	1		✓
CO 3	1	1		✓
CO 4	1	1		✓
CO 5	1	1		✓
CO 6		1	1	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

B.Sc. PHYSICS HONOURS

Programme	B.Sc. Physics Honours							
Course Title	FUNDAMENTAL	S OF OPTIC	CS					
Type of Course	Minor (SET III: SI	EMICONDU	JCTOR PHY	YSICS)				
Semester	II							
Academic Level	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total			
		per week	per week	per week	Hours			
	4	3	-	2	75			
Pre-requisites	Basics of Physics ar	nd Chemistry	(Plus Two L	evel)				
Course	This syllabus explores how light behaves, from reflection and bending							
Summary	to creating specific	to creating specific light sources and transmitting them through thin						
	cables.							

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyze the principles of reflection			Instructor-creat
	and refraction, applying them to	An	С	ed exams / Quiz/
	explain image formation by mirrors			Practical
	and lenses.			Assignment

000									
CO2	Describe the phenomenon of wave			Practical					
	interference and diffraction, and	Ар	Р	Assignment /					
	solve problems using concepts like			Observation of					
	the double-slit experiment.			Practical Skills					
CO3	Explain the concept of polarization			Instructor-creat					
	and its applications, including the	U	С	ed exams / Quiz/					
	use of polarizers and analyzers.			Practical					
				Assignment					
CO4	Describe the operating principles			Instructor-creat					
	of lasers, including stimulated	U	С	ed exams /					
	emission and population inversion,			Home					
	and identify different laser types.			Assignments					
CO5	Explain the concept of total			Seminar					
	internal reflection and apply it to	Ap	F	Presentation /					
	understand light propagation			Group Tutorial					
	through optical fibers.			Work					
CO6	Able to explain the advantages and	U	С	Viva Voce					
	applications of optical fibers in								
	communication and sensing.								
* - Ren	member (R), Understand (U), Apply (A	Ap), Analyse (A	An), Evaluate (E),	Create (C)					
# - Fac	tual Knowledge(F) Conceptual Know	ledge (C) Proc	edural Knowledge	e (P)					
Metaco	ognitive Knowledge (M)								

Detailed Syllabus:

Modu	Unit	Content	Hrs	Marks
le			(45	(70)
			+30)	
Ι		Reflection and Refraction	10	15
	1	Reflection at plane Mirrors, Reflection at spherical mirror: Basic terms, paraxial rays and paraxial approximation, sign convention, spherical mirror equation, Focal point and focal length	3	
	2	Spherical mirror equation applied to concave mirror, Conjugate points, extended object, lateral magnification, convex mirror and plane mirror	3	
	3	Refraction at spherical surfaces, Gaussian relation	2	

	4	Lens equation, Lens maker's equation.	2	
	Section	n 3.3, 3.4, 3.12, 4.8 - 4.10 of chapter 3 and chapter 4 of Book 1		
II	II Wave optics			
	5	Interference, Young double slit experiment	2	
	6	Coherence and conditions for interference	1	
	7	Interference in thin parallel films	2	
	8	Interference in wedge shaped film, Angle of wedge and thickness of spacer, Colour of thin films	2	
	9 Newton's rings: determination of wavelength of light			
	10 Diffraction: Difference between diffraction and interference, Fresnel and Fraunhoffer type diffraction		1	
	11	Fraunhoffer diffraction at a single slit, double slit (Calculus method is excluded), Plane diffraction grating.	3	
	12	Polarization: Types of polarization, Brewster's law, Production of plane polarized light	2	
	13	Polarizer and analyser, Malu's law, Double refraction	2	
	14	Optical activity and specific rotation	2	
		n 14.4 – 14.7,15.2, 15.5, 15.6 (upto 15.6.7), 17.6 - 17.7, 18.1, 18.2, 8.7, 20.1, 20.2, 20.5, 20.6, 20.8 - 20.11, 20.27 - 20.29, Book 1		
III		Lasers	8	15
	15	Lasers, Thermal equilibrium, Absorption of a Photon, Spontaneous emission, Stimulated emission, Population inversion	2	

		1				
	16	Components of Laser and lasing action	3			
	17 Ruby laser, Nd-YAG laser, Helium Neon laser, Carbon dioxide laser, semiconductor laser.					
	Section	ns 22.1, 22.3, 22.4, 22.7, 22.8, 22.9, 22.14, 22.15, Book 1				
IV	IV Fiber Optics					
	18	Introduction, Optical fiber, Total internal reflection	2			
	19	Propagation of light through optical fiber	1			
	20	Critical angle, Acceptance angle, Numerical Aperture, Modes of propagation	2			
	21	Classification of optical fibers, Losses in optical fiber, Applications	2			
	22	Fiber optic communication systems, fiber optic sensors.	1			
		ns 24.1 - 24.6, 24.8, 24.10, 24.11, 24.15, 24.20 - 24.21, 24.23 .1-24.23.2), Book 1				
V		PRACTICALS	30			
	Condu	et any 6 experiments from the given list and 1 additional experiment,				
	decide	d by the teacher-in-charge, related to the content of the course. The 7 th				
	experi	ment may also be selected from the given list. Other experiments listed				
	here m	hay be used as demonstrations of the concepts taught in the course.				
	Neces	sary theory of experiments can be given as Assignment/ Seminar.				
	1	Determine the refractive index of (a) given liquid and (b)the				
		material of a lens, by forming a liquid lens.				
		• Through this experiment the students are expected to get the				
		concepts of image formation, combination of lenses and				
		radius of curvature of the surface of lens.				

	• Determine the radius of curvature of the lens by Boy's method			
	and hence calculate the refractive indices.			
2	Determine the focal length of the combination of two lenses			
separated by a distance.				
	• Determine the focal lengths, f1 and f2 of the two lenses using			
	an illuminated cross-slit screen holder, nodal slide(for placing			
	the lenses) and plane mirror arrangement.			
	• Place the two lenses separated by a distance d, determine the			
	focal length, F of the combination and verify the relation			
	• $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$.			
	• The combination of the lenses in the eyepiece of the			
	spectrometer/ travelling microscope may be used for the			
	study.			
	• <u>https://www.youtube.com/watch?v=IOIEEtyNPBg</u>			
	• <u>https://www.youtube.com/watch?v=tNo4Ipk74SU</u>			
3	Determination of the dispersive power of a solid prism using a			
3	Determination of the dispersive power of a solid prism using a spectrometer.			
3				
3	spectrometer.			
3	spectrometer.Find the angle of the prism and the angle of minimum			
3	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a 			
3	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. 			
3	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors 			
3	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. Refractive indices of quartz prism using spectrometer. 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. Refractive indices of quartz prism using spectrometer. Determine the refractive indices of quartz for the ordinary and 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. Refractive indices of quartz prism using spectrometer. Determine the refractive indices of quartz for the ordinary and extraordinary rays of a sodium vapour lamp by arranging the 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. Refractive indices of quartz prism using spectrometer. Determine the refractive indices of quartz for the ordinary and extraordinary rays of a sodium vapour lamp by arranging the quartz prism at minimum deviation position in the 			
	 spectrometer. Find the angle of the prism and the angle of minimum deviation for prominent lines of the mercury spectrum using a spectrometer. Calculate the refractive indices corresponding to the colors and find the dispersive power of the material of the prism for two pairs of wavelengths. Refractive indices of quartz prism using spectrometer. Determine the refractive indices of quartz for the ordinary and extraordinary rays of a sodium vapour lamp by arranging the quartz prism at minimum deviation position in the spectrometer. 			

5	Determination of wavelengths of mercury spectrum using	
	diffraction grating and spectrometer.	
	• Arrange the grating at normal incidence.	
	• Standardize the grating using the green line of mercury and	
	then find the wavelengths of other prominent lines of the	
	spectrum.	
6	Newton's rings-determination of the wavelength of sodium light	
	• Form of Newton's rings in the air-film in between a	
	plano-convex lens and a glass plate using sodium-source.	
	• Determine the radius of curvature by Boy's method and	
	determine the wavelength of the source.	
	• Optional: In experiment 5 and 6, record a short video of the	
	interference pattern, calibrate the video using scale marked on	
	the glass plate, analyse the video using Tracker tool. From the	
	intensity profile get the locations of the dark rings and	
	calculate the wavelength of the source/thickness of the sample	
	https://physlets.org/tracker/.	
	https://www.youtube.com/watch?v=UCCPkJpUQEw	
7	Air wedge-determination of the radius of a thin wire/human	
	hair/thin foil.	
	• Form interference fringes using sodium-source, in the air-film	
	in between wedge formed by placing the given sample	
	between the glass plates.	
	• Measure the positions of the successive dark bands using a	
	travelling microscope and determine the angle of the wedge	
	and thickness of the sample given.	
8	Single slit diffraction using laser - Determination of slit width.	
	• The laser light diffracted from the narrow slit is allowed to fall	
	on a screen and record the maxima or minima points in a	
	paper.	

	• From the width of the central maxima or the position of	
	minimum intensity points, calculate the slit width.	
	• Verify the slit width using a traveling microscope.	
	• Wavelength of laser can be found using diffraction grating of	
	known N.	
9	Study the specific rotation of the sugar solution using a	
	polarimeter.	
	• Determine the specific rotation corresponding to different	
	concentrations of the sugar dissolved in water.	
	• Draw a graph between rotation and concentrations and verify	
	the linear relationship.	
10	Verification of Malus's law using polarizer, analyzer and photo	
	detector	
	• Unpolarized light is allowed to pass through a polarizer and is	
	observed through an analyzer.	
	• Vary the angle between the axes of polarizer and analyzer and	
	measure the intensity of the light (current output of the	
	photodetector).	
	• Plot $\theta - I$ and $\cos^2 \theta - I$ graphs and verify the Malus's law.	
	 A flat computer monitor (or LCD TV screen) in plain white color can be used as the source of linear polarized light. The ambient light sensor of the smartphone and the orientation sensor of the smartphone can be used to measure the illuminance and the angles respectively. A small piece of polarizer (a square of about 1 cm side) from an old calculator's display was placed over the ambient light sensor as analyser. https://arxiv.org/pdf/1607.02659 	
11	Spectrometer-Determination of the Cauchy's constants of the	
	given prism	
	• Find the angle of the prism, the minimum deviation angles of	
	the prominent lines of the mercury spectrum and hence	
	calculate the refractive indices for the colors.	
	• Determine A and B from the $\mu - \frac{1}{\lambda^2}$ graph.	

	• Drop a polished steel ball into a glass tube of a somewhat
	larger diameter containing the liquid.
	• Record the time required for the ball to fall at constant
	velocity through a specified distance between reference
	marks.
	• Use the Stoke's law for the sphere falling in a fluid under
	effect of gravity, to estimate the viscosity of the liquid.
13	Surface tension of liquid - Capillary rise method
	• Clamp a clean capillary tube by dipping its lower end into the
	liquid in the beaker.
	• Measure the rise of water in the tube using a traveling
	microscope.
	• Also measure the radius of the capillary tube using the
	traveling microscope and estimate the surface tension of the
	liquid.
	• Density of the liquid can be determined using Hare's
	apparatus of can be given
14	Viscosity of a liquid - Poiseuille's Method
	• Fill the liquid in a vertically fixed burette with its lower end
	attached to a capillary tube, placed in horizontal position
	using a rubber tube.
	• Note the time taken to reach each 10cc of water and the height
	of the corresponding marking.
	• Also measure the radius of the capillary tube using the
	traveling microscope and estimate the viscosity of the liquid.
15	Static torsion Rigidity modulus
	• Using Searle's static torsion apparatus, determine the rigidity
	modulus of the material of the rod.
d D of	erences:

2) Optics by Ajoy Ghatak, Tata McGrow-Hill (Book 2)

3) Optics by Eugene Hecht, Addison-Wesley (Book 3)

	PSO	PSO	PSO	PSO	PS	PSO	PO1	PO2	PO3	PO4	PO5	РО	PO
	1	2	3	4	05	6						6	7
CO 1	3	2	2	1	2	0	3	1	1	0	2	1	0
CO 2	3	2	2	1	2	1	3	3	2	1	2	1	0
CO 3	3	2	3	2	2	1	3	2	2	1	2	1	0
CO 4	3	2	2	1	2	0	3	2	2	1	2	1	0
CO 5	2	3	2	1	2	1	3	2	2	1	3	1	0
CO 6	2	3	2	1	2	2	3	2	2	1	3	1	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignmen	Practical Skill	End Semester
	Practical Exam	t /Viva	Evaluation	Examinations
CO 1	1	1		1
CO 2	1	1		 ✓
CO 3	1	1		1
CO 4	1	1		1
CO 5	1	1		1
CO 6		1	1	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics	B.Sc. Physics Honours					
Course Title	ELECTRONIC COMMUNICATION						
Type of Course	Minor (SET III: SEMICONDUCTOR PHYSICS)						
Semester	Ш						
Academic Level	200 - 299						
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours		
	4	3	-	2	75		
Pre-requisites	Fundamentals of EM wave characteristics and electronics						
Course Summary		-		of the EM we implementation	rave spectrum, on.		

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Explain main parts and different types of electronic communication system. Define electromagnetic spectrum and its application in communication systems.	U & Ap	Р	Instructor-created exams / Home Assignments
CO2	Calculate voltage gain, current gain, attenuation. Explain relation between Q, resonant frequency and bandwidth.	Ар	Р	Instructor-created exams / Home Assignments
CO3	Explain the basic concepts of AM and FM. Compare AM and FM and calculate parameters such as modulation index, band width.	U & An	Р	Instructor-created exams / Home Assignments
CO4	Explain the fundamental concepts in digital communication such as		С	Instructor-created exams / Home

	quantizing error, analog to digital conversion, sampling, PAM, PWM, PPM, difference between asynchronous and synchronous data transmission.	U		Assignments			
CO5	Explain the reasons for the growing use of microwaves and millimetre waves in communications. Identify the microwave and millimetre-wave band segments and various microwave components used in this communication system.	U & An	Р	Seminar Presentation / Group Tutorial Work			
CO6	Design and construct various circuit elements useful in communication systems. Design experiments to identify different characteristics of electromagnetic spectrum.	Ар	Р	Practical Assignment / Observation of Practical Skills / Viva Voce			
# - Fa	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M) 						

Detailed Syllabus:

Modul	Uni	Content	Hrs	Mar				
e	t		(45	ks				
			+30)) (70)				
Ι		INTRODUCTION TO COMMUNICATION SYSTEM	13	20				
	1	The significance of human communication, communication system, Types of communication systems.	2					
	2	Modulation and multiplexing, the electromagnetic spectrum	2					
	3	Bandwidth, survey of communication application	2					
	4	Gain, Tuned Circuits	3					
	5	Filters: Passive RC filters, Active filters (advantages, qualitative discussion on op-amp based active filters using circuit diagrams)	2					
	6	Fourier theory	2					
	Relev	rant topics of chapter 2 of Book 1; sections 1.1-1.7, 2.1, 2.2, 2.3						
	(selec	eted topics), 2.4 of chapter 2 of Book 1						

II	AMPLITUDI	E AND FREQUENCY MODULATION	12	18		
	7 AM modulation modulation	concepts, Modulation index and percentage of	2			
	8 Sideband and freq	uency domain, pulse modulation	2			
	9 AM power, Single sideband modulation					
	10 Basic principles of frequency modulation, principles of phase modulation					
	11 Modulation index	and side bands, Bessel functions	2			
	12 Frequency suppre	ssion effect of FM, AM versus FM	2			
	Relevant topics of chapte	er 3 and 5 of Book 1; Sections: 3.1 to 3.5, 5.1 to 5.5				
	of chapter 3 and chapter	5 of Book 1				
III	DIO	GITAL COMMUNICATION	10	16		
	13 Digital transmissi	on of data, serial and parallel transmission	2			
		Basic principles of data conversion, General converters and AD converters	2			
	15 Pulse modulation,	pulse code modulation	2			
	16 Digital signal pro	cessing	2			
	17 Principles of digit	al transmission	2			
	Relevant topics of chapte	er 7 and 11 of Book 1; Sections: 7.1 to 7.5, 11.1,				
	11.2 of chapter 7 and cha	pter 11 of Book 1				
IV	MICROMETRE	AND MILLIMETRE COMMUNICATION	10	16		
		epts, microwave frequencies and band, advantages ges of microwave transmission, microwave ystem.	2			
	19 Microwave lines a	and devices	2			
	20 Microwave semic	onductor diode	2			
	21 Microwave tubes		2			

	22	2									
		Microwave antenna: Low frequency antenna, horn antenna, Microwave and millimetre wave applications	2								
		where wave applications									
	Relev	ant topics of chapter 16 of Book 1; Sections: 16.1 to 16.5, 16.7 of									
	chapt	chapter 16 of Book 1									
V	PRACTICALS										
	Cond	uct any 6 experiments from the given list and 1 additional experiment,									
		ed by the teacher-in-charge, related to the content of the course. The 7^{th}									
	-	iment may also be selected from the given list. Other experiments									
	cours	here may be used as demonstrations of the concepts taught in the e.									
	Neces	ssary theory of experiments can be given as Assignment/ Seminar.									
	1	Design and construct passive RC filters									
	• Measure the frequency responses of low-pass and high-pass										
	RC circuits and plot frequency response graphs (Bode plots)										
		of the amplitude and the phase.									
	2	Construct amplitude modulator circuit									
		• Design and construct an amplitude modulator circuit.									
		• Study the response for suitable modulation depths.									
	3	Construction of D/A converter									
		• Construct a 4 bit D/A converter using R-2R ladder network.									
		• Plot a graph of analog output voltage versus binary number.									
	4	Determine the numerical aperture (NA) of an optical fiber using a laser									
		• Couple the light from the laser source onto one of the fiber ends and the light coming from the other end is allowed to fall on a screen(sheet having circular markings) placed perpendicular to the axis of the fiber.									
		• Measure the diameter of the laser beam on the screen and the distance between the screen and fiber output end and hence calculate the NA.									

5	Attenuation and bandwidth of optical fibre
	• Determine the attenuation and bandwidth of the given optical fibre specimen
6	Fourier analysis of the modes of vibration in a stretched string.
	• Record the sound produced by guitar string (or similar arrangement) using a microphone and analyze the spectrum by taking FFT.
	• Audio Spectrum in the Pyphox, Audacity, ExpEYES or any other tools can be used to record the sound and to take FFT.
	• Vary the length and tension of the string and analyze the harmonics.
	• <u>https://phyphox.org/experiment/audio-spectrum/</u>
	• <u>https://www.youtube.com/watch?v=bl7jf2myEvM</u>
	• <u>https://expeyes.in/experiments/sound/beats.html</u>
7	Construct Half adder using universal gates and study the operation.
	• Implement half adder using NAND/NOR gates and verify the truth table for each input/output combination.
8	Verification of De-Morgan's Theorems using basic gates.
	• Realize the either side of the De-Morgan's Theorems using gates from appropriate ICs and verify the truth table for each input/output combination.
9	Construct and study the operations of the RS and JK Flip-Flops using IC's
	• Realize RS Flip-Flop using NAND gates and verify the truth table
	• Realize JK Flip-Flop using NAND gates from appropriate ICs and verify the truth table
10	Construction of the center tapped full wave rectifiers and regulated power supply.
	• Construct a center tapped full wave rectifier without filter and with a filter.
	• Measure the AC and DC voltages using a multimeter and calculate the ripple factor without and with a filter.

-	
	• Observe the variation of the ripple factor with load resistance, when filter is used.
	• Construct 5V/12V regulated power supply using 78XX IC.
11	Study the frequency response of common emitter(CE) transistor amplifier.
	• Design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
	• Analyse the frequency response, draw the curve and find the bandwidth, without feedback.
12	Construction of LC oscillator (Hartley or Colpitt's)
	• Construct a LC oscillator (Hartley or Colpitt's) and measure the frequency using CRO/ExpEYES for different values of L and C. Compare with the theoretical values.
13	Determination of Plank's constant using LEDs
	• Observe the turn-on voltage,
	• V_0 of LEDs and calculate the value of h. Use at least 4
	different colors of LED (with transparent casing)
	• Plot $\frac{1}{\lambda} - V_0$ graph using Python, fit a straight line to get the slope and estimate the value of <i>h</i> .
	• Calculate the %error.
	• Programmable voltage source of ExpEYES may be used to find the turn-on voltage.
14	Analysis of Hydrogen spectra using the Tracker Video Analysis tool.
	• Calibrate the video of the Hydrogen spectra in the Tracker
	tool using two laser wavelengths/lines of mercury spectra.
	 tool using two laser wavelengths/lines of mercury spectra. Plot the intensity profile, find the prominent wavelengths of the Balmer series and calculate the Rydberg's constant.
	• Plot the intensity profile, find the prominent wavelengths of
	 Plot the intensity profile, find the prominent wavelengths of the Balmer series and calculate the Rydberg's constant.
	 Plot the intensity profile, find the prominent wavelengths of the Balmer series and calculate the Rydberg's constant. Estimate the %error.

	15	Black body spectrum of Sun -Estimation of surface temperature using the Tracker Video Analysis tool.					
		• Calibrate the video of the solar spectra in the Tracker tool using two laser wavelengths/lines of mercury spectra.					
		• Plot wavelength vs intensity, get λ_{max} and using Wein's law calculate the surface temperature.					
		• Pre recorded video of the solar spectra can be used.					
Books an	d Refe	rences:					
1. P	1. Principles of electronic communication system, 4 th Edition by Louis E. Frenzel (Book 1)						
2. E	2. Electronic communication systems, 5th Edition by y George Kennedy, Brendan Davis, Srm						
P	rasanna	- Mc-Graw Hill(Book 2)					
3. E	lectron	ic Communications System, 5th Edition by Wayne Tomasi, Pearson (Book 3)					

4. Principles of Electronics, 11th edition by V.K. Mehta and Rohith Mehta, S Chand & Company (Book 4)

Mapping of COs with PSOs and POs :

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	1	2	3		05	6							
CO 1	3	2	1	0	0	2	3	3	3	2	1	1	0
CO 2	3	2	1	0	0	2	3	3	3	2	1	1	0
CO 3	3	2	1	0	0	2	3	3	3	2	1	1	0
CO 4	3	2	1	0	0	2	3	3	3	2	1	1	0
CO 5	3	2	1	0	0	2	3	3	3	2	1	1	0
CO 6	3	2	2	0	0	3	3	3	3	2	1	1	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Assignments
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignment	Practical Skill Evaluation	End Semester Examinations
CO 1	1			1
CO 2	1			1
CO 3	1			1
CO 4		1		1
CO 5		1		1
CO 6			✓	