Executive Summary of Minor Research Project entitled
THE LAPLACIAN SPECTRUM OF GRAPI IS AND
STUDY OF INVERSE EIGEN VALUE PROBLEMS:

Spectral Graph Theory is the study of the spectra of certain matrices defines from a
stven graph, including the adjacency matrix, the Laplacian matrix and other related
matrices. Graph Spectra have been studied extensively for more than fifty years. For
the past two decades, the interest have been developed in the study of the generalized
h negative off —

Laplacian matrix of a graph , that is, real symmetric matrices wit
diagonal entries in the positions described by the edges of the graph and zero 1n all

other off — diagonal positions. Spectral Graph Theory has traditionally used the
s the adjacency matrix,

spectra of specific matrices associated with the graph such a
he graph.

Laplacian matrix or other normalized forms to provide information about t

For certain families of graphs it is possible to characterize a graph by the spectrum of
this is not possible, but

certain matrices associated with the graph. More generally,
f these

many useful information about the graph can be obtained from the spectra 0
various matrices.

Just as astronomers study stellar spectra to determine the make — up of distant stars
one of the main goals in the graph theory is to deduce the principal properties and
structure of a graph from its graph spectrum. We will see that eigenvalues are closely
related to almost all major invariants of a graph, linking one extremal property to

another. Further speaking, eigenvalues play a central role in our fundamental

understanding of graphs.  The study of eigenvalues realizes increasing rich

connections with many other areas of mathematics. A major development is the

relation between spectral graph theory and differential geometry. There is an
interesting analogy between Spectral Riemannian Geometry and Spectral Graph
Theory. Algebraic spectral method are also very useful especially for extremal

examples and constructions. Also there are wide applications in the field of chemistry.

/
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My work includes the study of numerous graph invanants including
connectivity. ex . . : . - graphs
ectivity, expanding properties, the limit points of laplacian spectra of graphs,
la lan s . . 1
placian spectra and invariants of graphs, a relation between the matching number
an - 5. = - <
d laplacian spectrum of graph and bounds of laplacian spectrum based on the

domination number. Also a comparison between the spectra of graphs sod Bioes 4

studied. A review of the Inverse Eigen Value Problem also done.

In this project I have discussed many representations of 2 graph as matrioes and a
review of study has done regarding which representation is comparatively more
reliable. The main difficulty we encounter is the co spectrality between graphs. A
deep study has made and I have presented a paper in this area. The Spectrum of a
graph has been widely used in graph theory to characterize the properties of a graph
and extract information from its structure. It is also used as 2 tool for graph
representation for pattern matching tasks. Its use has not gained wide acceptance as 2
representation for matching and comparison of graphs. There are two main reasons
for this; firstly more than one graph may share the same spectrum and secondly. the
spectrum mat change dramatically with a small change structure. Graph structures
has been used to represent structural and relational arrangements of entities In many
vision problems. The key problem in utilizing graph representations lies in measuring
their structural similarity. This is a difficult problem because there are no explicit
labeling of the parts and correspondences must be established before similarity can be

e ~ assessed Spectral Graph theory provides a method to the problem of graph similanty.

is approach is based on a branch of mathematics that is concemad With
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Survey shows that the adjacency matrix appears
terms of producing a large number of cospectral pairs. g superior in
this regard and the signless Laplacian even better. The normalize
hs rapidly falls and becomes

appears to be inferior, but the fraction of cospectral grap
normalized laplacian

ger graphs. The
rtices. In contrast, the
9%, 21 %

far smaller than for other representations for lar

produces approximately 0.2% co spectral graphs with 11 ve

signless laplacian, laplacian, and adjacency matrix produces 3.8%,

respectively.

The results show that the use of the Laplacian or relate
es. As a graph similarity measure,

d matrices can drastically

reduce the problem of cospectrality between tre

Laplacian matrix and spectrum seems 10 be superior. The adjacency matrix is trhe

weakest representation of the ones investigated. While the performance of the

an is similar to that of the Laplacian, the normalized Laplacian seems

N\

SIGNATURE OF PRINCIPAL INVESTIGATOR

signless laplaci

to be less effective
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L. The number of edges in G = —a,_, = trace(A®) Y

2 2
3 3
2. The number of triangles in G = _a;“’ = trac:(A i 2:‘ o

From the Laplacian spectrum the following properties of graph structure can be Vimﬁd '_ ;

L IfG = (V,E) be a simple graph with n vertices, then the multiplicity of n as
value of L(G) is at least s-1 if and only if G contains a complete s- partite STQPA
a subgraph. ' ‘

2. If a connected graph G has a pendant vertex, then the multiplicity of an eigen v ‘
L(G) is at most 1. o

3. If G is a simple connected graph with an eigen value (0 < A < 1), then the
G is at least 3. r -

4. If G is a simple connected graph of order n (>2) and G has a penda
smallest non zero eigen value is less than or equal to 1. More over, the. nail
eigen value is strictly less than 1 if the pendant vertex is not adjacent to
degree vertex.

5. For a graph G on n vertices, ¥ A; < n, with equality holding
isolated vertices.

6. Forn=2, 1; < n—’:l- with equality holding if and only if G is
vertices. Also for a graph G without isolated vertices, we W

One important use of Spectral graph theory is to determing 7
two graphs have different spectra or equivalently dﬂ!réut,

they are not isomorphic. However, non-isomorphic grag ¥
(o be cospectral if they have the same eigen values w
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Theorem:

IfGisnot Ky , then 3, < k,. The diameter of a connected graph G is Jess than the number of

distinct eigen values of the adjacency matrix.

4. GRAPH DISTANCE

There are a number of ways to measure the distance between (two graphs; the most appropriate is
the edit distance. The edit distance is defined by a sequence of operations, which includes edge and
vertex deletion and insertion that transform one graph into another. Each of these operations s
an associated cost, and the total cost of a sequence of edits is the sum of the individual coSIS. s
sequence of minimal cost which transforms one graph into another is the edit distance between
graphs.

The spectral distance between the graphs G, and G is the Eu
d, (G, ,G,) = X:(si — t)2. When the specira are of different sizes then the smaller spectra are
adjoined with the zero values. This is equivalent to adding disjoint vertices [0 the smaller graphs 1o
make both graphs the same vertex cardinality.

If the spectrum is to be a good representation, the spectral distance should be related to the edit
distance between the graphs.

clidean distance between the spectra.

5.CLASSIFICATION AND CLUSTERING

These are the two central tasks in pattern recognition and they are of huge practical importance.
Similarity based classification is an important task for graphs particularly on large graph
databases. In such situations the spectrum of the graph would be an ideal tool, as it is easy [0
compute from the corresponding matrix representation. If the spectrum of a matrix is a good
representation then we should be able to group similar graphs together .

6. APPLICATIONS

1. Spectral Embeddings )
Considering the Laplacian as a quadratic form measuring the difference between values of a v cmp
across all edges in a graph, we see that a Laplacian eigen vector of low eigen value must Ve
values that are very similar on adjacent vertices.this property makes Laplacian eigen vecte <SG
eigen value useful for generating embeddings of arbitrary graphs into Euclidean space.th "
basis for a number of nonlinear dimensionality reduction techniques. The problem is
data points in a very high dimensional space, we want to embed the points in a lc
space such that the distance between the points are approximately preserve
not be possible to preserve the distance between the farther points; he;
distances between the nearby points. L s

2.Graph Colouring Heuristics
The eigen vector corresponding to the |
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problems: we can look at eigen vectors with high eigen value and colour vertices with different
colours according to their value in that e igen vector. .

3.Grapl isomorphism
Two graphs are isomorphic if and only if there is a permutation of the labelling of the vertices sucf:
that the two graphs have all the same edges. Hence H and G are isomorphic if and on{y if
PTL(G)P = L(H) for some permutation P. Since the eigen values are invariant under unitary
transformations, and permutations are a subset of unitary transformations, it follows that H and G
must have the same eigen values if they are isomorphic. T’ he converse is nol (rue. But there af'e
some iricks for some converses. lf we can find an eigen value whose eigen vector has all of its
entries distinct, then that eigen vector defines a unique permutation of vertices.

7.CONCLUSIONS

: ] d trees.
All the matrix representations can reduce the problem of cospectrality between graphs an ;
all these representations,

When the trees are large enough , almost all trees are cospectral. For ;
there is a close relationship between the edit distance and the spectral distance..As a grap

similarity measure, the Laplacian mairix seems (o be superior. The adjacency matrix is the vf'ealesl
of all representations and its spectrum is not used 1o represent the underlying graph. The signless
Laplacian performs similar to the Laplacian, but the normalized laplacian seems [0 be less

effective.
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