

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	PROPERTIES OF MATTER & THERMODYNAMICS						
Type of Course	Minor (SET II: MATERIALS PHYSICS)						
Semester	Ι						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	1. Awareness of Newton's first law, Hooke's law and static friction						
Course Summary	understanding and their appl	understanding of fundamental concepts of Equilibrium and Elasticity and their applications					

Course Outcomes (CO):

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the concept of the center of	U	С	Instructor-cre
	gravity and its significance in determining			ated exams /
	stability. Solve problems involving the			Quiz
	equilibrium of rigid bodies subjected to			
	various forces and torques. Apply			
	principles of equilibrium to analyze real			
	world scenarios. Get the concept of			
	elastic moduli and their significance in			
	characterizing material properties.			
CO2	Understand density and pressure in a fluid	Ар	Р	Practical
	and their effects in fluid behaviour.			Assignment /
	Explain the principle of buoyancy and its			Observation
	application in determining the behavior of			of Practical
	floating and submerged objects.			Skills

	Understand Bernoulli's principle and its significance in describing the behaviour of fluids in motion. Analyse viscosity and turbulence.						
CO3	Get the concepts of temperature and thermal equilibrium. Demonstrate a clear understanding of the first law of thermodynamics, including the principles of conservation of energy and the relationships between heat, work, and internal energy. analyze various thermodynamic processes, including the work done during volume changes and the paths between thermodynamic states.	Ар	Р	Seminar Presentation / Group Tutorial Work			
CO4	Calculate and interpret the internal energy of ideal gases, understanding the heat capacities and behavior of ideal gases under different conditions, including adiabatic processes.	U	С	Instructor-cre ated exams / Home Assignments			
CO5	Grasp the significance of the second law of thermodynamics in determining the direction of thermodynamic processes. Analyze heat engines and refrigerators, applying the principles of the second law to evaluate their efficiency.	Ар	Р	One Minute Reflection Writing assignments			
CO6	CO6understand fundamental concepts in thermodynamics and apply them in practical situations.ApPViva Voce						
* - Re	member (R), Understand (U), Apply (Ap), A	nalyse (An), l	Evaluate (E), C	Create (C)			
# - Fac	ctual Knowledge(F) Conceptual Knowledge ((C) Procedura	l Knowledge (P)			
Metac	ognitive Knowledge (M)						

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)	
Ι	Equilibrium and Elasticity				
	1	Conditions of Equilibrium, Center of Gravity	2		
	2	Solving Rigid body Equilibrium Problems	3		
	3	Stress, Strain and Elastic moduli	4		
	4	Elasticity and Plasticity	1		

	Secti							
II	Fluid	Fluid Mechanics						
	5	Gases, liquids and Density, Pressure in a Fluid	2					
	6	Buoyancy, Fluid flow	3					
	7	Bernoulli's Equation	3					
	8	Viscosity and Turbulence	2					
	Secti							
III	Tem	perature, Heat and First Law of Thermodynamics	15	25				
	9	1						
	10	Thermodynamic systems	1					
	11	Work done during volume changes	2					
	12	1						
	13	2						
	14	2						
	15	2						
	16	Heat capacities of an ideal gas	1					
	17	Adiabatic process for an ideal gas	3					
	Secti Book	ons from References:17.1, 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7, 19.8, 1						
IV		The Second law of thermodynamics	10	15				
	18	Directions of thermodynamic processes	1					
	19	Heat Engines, Refrigerators	2					
	20	Second law of thermodynamics	2					
	21	The Carnot Cycle	3					
	22	2						
	Secti	ons from References:20.1, 20.2, 20.4, 20.5, 20.6, 20.7, Book 1						
V		PRACTICALS	30					

Cont		
	uct any 5 experiments from the given list and 1 additional experiment,	1
decid	ed by the teacher-in-charge, related to the content of the course. The 6 th	1
exper	iment may also be selected from the given list.	
•	Necessary theory of experiments can be given as Assignment/	1
	Seminar.	1
1		
	• Use optic lever and telescope. Take measurements for minimum two lengths. Obtain the elevation (e) from the shift	
	(s) in the telescope reading and calculate Y from it.	l
	• For each length of the bar, plot the load-elevation graph (using	1
	GeoGebra) and obtain m/e, and then calculate Y from it.	1
	• Estimate the random error in the measurements and the error	1
	of the result using propagation of error formulae.	l
2		
	1	
	• Use pin and microscope. Take measurements for minimum	l
	two lengths. Obtain the depression (e) from the shift in the	l
	microscope reading and calculate Y from it.	1
	• For each length of the bar, plot the load-depression graph	l
	(using GeoGebra) and obtain m/e. and then calculate Y from	l
	it.	1
	• Estimate the random error in the measurements and the error	l
	of the result using propagation of error formulae.	1
3	Torsion Pendulum- Determination of the Moment of Inertia and	
	Rigidity Modulus.	1
	• Using identical masses on the disc, determine the moment of inertia of the disc.	
	• Verify the moment of inertia by direct method. $I = \frac{1}{2}MR^2$	1
	• Using L calculate rigidity modulus of the material of the wire	1
	$n = \frac{8\pi l}{r^4} \frac{L}{T^2}$	
4	Static torsion - Rigidity modulus	
	• Using Searle's static torsion apparatus, determine the rigidity modulus of the material of the rod.	
5	Viscosity of a liquid - Poiseuille's Method	
	• Fill the liquid in a vertically fixed burette with its lower end	l
	attached to a capillary tube. placed in horizontal position	l
	using a rubber tube.	1

	 Note the time taken to reach each 10cc of water and the height of the corresponding marking. Also measure the radius of the capillary tube using the traveling microscope and estimate the viscosity of the liquid. 	
6	Viscosity of a liquid - Falling Ball Viscometer	
	 Drop a polished steel ball into a glass tube of a somewhat larger diameter containing the liquid. Record the time required for the ball to fall at constant velocity through a specified distance between reference marks. Use the Stoke's law for the sphere falling in a fluid under effect of gravity, to estimate the viscosity of the liquid. 	
7	Surface tension of liquid - Capillary rise method	
	 Clamp a clean capillary tube by dipping its lower end into the liquid in the beaker. Measure the rise of water in the tube using a traveling microscope. Also measure the radius of the capillary tube using the traveling microscope and estimate the surface tension of the liquid. Density of the liquid can be determined using Hare's apparatus of can be given 	
8	Density of the liquid using manometer	
	 Fill a manometer tube partially with water. Pour the given oil (or any liquid which does not mix with water) into the left arm of the tube until the oil-water interface is at the midpoint. Both arms of the tube are open to the air. Measure the heights of the oil and water using a traveling microscope and hence estimate the density of the oil assuming that of water. Example 12.4 of book 1 	
9	Verification of Boyle's law and Charle's law	
	 Boyle's law (PV= a constant) states that at a constant temperature, volume of a gas is inversely proportional to pressure. Determine the volume - pressure relation at constant temperature using the water column. Plot the pressure versus volume graph and verify Boyle's law. Verify the law at minimum two different temperatures. Charle's law (V/T = a constant) states that at constant pressure, volume is directly proportional to temperature. In this experiment determine the temperature - volume relation at constant pressure using the water column. Plot the temperature versus volume graph and verify the Charle's law. 	

	• Verify the law at minimum two different pressures.	
10	Verification of Gay-Lussac's law	
	 Gay-Lussac's law (P/T = a constant) states that at constant volume, pressure is directly proportional to temperature. In this experiment determine the temperature - pressure relation at constant pressure using metallic bulb and water column or pressure gauge or using Jolly's bulb apparatus. Plot the temperature versus volume graph and verify the Charle's law. 	
11	Thermal conductivity by Searle's method	
	• Determine the thermal conductivity of copper or any other metal using Searle's method / apparatus.	
12	Temperature coefficient of resistance of a metal	
	 Resistance of metals increases with increase in temperature. Measure the resistance of the metal coil, using Carey Foster's bridge or Potentiometer or any other suitable method, as a function of temperature from 100 degree Celsius to room temperature. Plot graph and find the temperature coefficient of resistance. 	
13	Thermo emf of a Thermocouple	
	• Study the variation of thermo emf of a thermocouple as a function of temperature of the hot junction while maintaining the cold junction at 0 degree Celsius.	
14	Newton's law of cooling	
	 According to Newton's law of cooling, the rate of heat loss of a hot body is proportional to the difference in temperature between the body and the surroundings. The calorimeter is filled with hot water and the variation in temperature is noted as a function of time. Cooling rate graph is plotted and law is verified. Emissivity of the surface of the calorimeter can also be determined. ExpEYES with PT1000 sensor may be used to record the temperature. https://expeyes.in/experiments/thermal/cooling.html 	
15	Characteristics of NTC thermistor	

	 Resistance of Negative Temperature Coefficient (NTC) thermistors decreases with increase in temperature. Measure the resistance of the thermistor, using Carey Foster's bridge or Potentiometer or ExpEYES or any other suitable method, as a function of temperature from 100 degree Celsius to room temperature. Plot the graph and study the characteristics. 						
16	Melting point of wax						
	 Fill a test tube with wax until half and use a thermometer inside the wax / test tube to measure wax temperature. Avoid the thermometer touching the test tube. Immerse the test tube in a water bath with the help of a stand, in such a way that the wax is below the water level. Use a suitable flame / heating rate and measure the wax temperature as a function of time at a suitable time interval. Plot temperature versus time graph. ExpEYES and PT1000 sensor may be used to record the temperature. https://expeyes.in/experiments/thermal/cooling.html The temperature increases initially and remains constant until the wax melts completely. The flat temperature gives the melting point of wax (The melting point depends on the type of wax used) 						
Books and Re	erences:						
1.University Physics with Modern Physics- Hugh D. Young, Roger A. Freedman, 15th Edition (Book 1)2.Intermediate Dynamics (Edn.2) by Patrick Hamill							
3.An Introduction to Mechanics" by Daniel Kleppner and Robert J. Kolenkow							

- 4. Mechanics" by Keith R. Symon
- 5.Concepts in Thermal Physics by Stephen J Blundell and Katherine M. Blundell
- 6. Thermal Physics by Charles Kittel and Herbert Kroemer
- 7.An Introduction to Thermal Physics by Daniel V. Schroeder
- 8. Heat and Thermodynamics by Mark Zemansky, Richard Dittman.

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	1	2	3		05	6							
CO 1	3	2	2	3	2	2	3	2	2	1	2	2	0
CO 2	1	3	2	1	2	1	2	3	2	1	2	2	0
CO 3	1	1	3	3	3	1	2	2	3	2	3	2	0
CO 4	3	1	2	1	1	2	3	2	2	2	2	2	0
CO 5	1	2	1	1	2	2	2	1	2	2	3	2	0
CO 6	2	2	1	1	1	3	2	2	2	2	2	3	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignmen t /Viva	Practical Skill Evaluation	End Semester Examinations
CO 1	1	1		✓
CO 2	1	1		✓
CO 3	1	✓		✓
CO 4	1	✓		✓
CO 5	1	1		✓
CO 6		1	✓	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours								
Course Title	MODERN PHYSICS AND NUCLEAR PHYSICS								
Type of Course	Minor (SET II: MA	ATERIALS	PHYSICS)						
Semester	II								
Academic Level	100 - 199	100 - 199							
Course Details	Credit	Lecture	Tutorial	Practical	Total				
		per week per week Hours							
4 3 - 2									
Pre-requisites	 Foundational understanding of classical physics, particularly in mechanics and electromagnetism. Proficiency in algebra, calculus and trigonometry. 								
Course Summary	This course explores the structure and b theoretical discussi investigate electrom atomic structure, nuc	s the dual na ehavior of a lons and p lagnetic wav clear compos	ture of partic atomic and r practical app es, particle-v sition, and nu	eles and wave nuclear system plications, str wave duality clear transform	s, as well as ns. Through udents will phenomena, mations.				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the duality of particles and waves, Describe experimental evidence supporting the wave-particle duality, including the photoelectric effect and Compton effect.	U	С	Instructor-create d exams / Quiz
CO2	Define pair production and its	U, Ap	Р	Seminar
	significance in quantum			Presentation /

	mechanics, Understand the concept of matter waves proposed by Louis de Broglie.			Group Tutorial Work						
CO3	Explain the structure of the atom according to the nuclear model, Understand Energy Levels and Spectra	Ар	Р	Practical Assignment / Observation of Practical Skills						
CO4	CO4 Investigate Nuclear Structure U C Instructor-create d exams / Home binding energy, and models such as the liquid drop model and shell model									
CO5	Understand radioactive decay processes and their implications for nuclear stability,	Ар	Р	One Minute Reflection Writing assignments						
CO6	CO6Analyse nuclear reactions, including fission and fusion, and their relevance in energy production and stellar evolution.ApPWriting assignments /Viva Voce									
* - Re # - Fae Metac	 * - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M) 									

Detailed Syllabus:

Modul e	Uni t	Content	Hrs (45 +30)	Mar ks (70)
Ι		Particle properties of waves & Wave properties of particles	12	15
	1	Electromagnetic Waves, Black body Radiation	3	
	2	Photoelectric Effect	2	
	3	Compton Effect	2	
	4	Pair Production	3	
	5.	De Broglie Waves	2	
	Section	ons from References: 2.1, 2.2, 2.3, 2.7, 2.8, 3.1, Book 1		
II		Atomic Structure	10	22
	6	The Nuclear Atom	2	
	7	Electron Orbits	2	

	8	Atomic Spectra	2						
	9	The Bohr Atom	2						
	10	Energy Levels and Spectra	2						
	Sectio	ons from References:4.1, 4.2, 4.3, 4.4, 4.5, Book 1							
III		Nuclear Structure	13	20					
	11	Nuclear composition	2						
	12	Nuclear properties	2						
	13	Stable nuclei	2						
	14	Binding energy	2						
	15	Liquid drop model, Shell model	2						
	16	Magic numbers	1						
	17	Meson theory of nuclear forces.	2						
	Sectio	ons from References:11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, Book 1							
IV		Nuclear Transformations	10	13					
	18	Radioactive decay, radioactivity and the Earth	1						
	19	Half-life, Radiometric dating	2						
	20	Alpha decay, Beta decay, Gamma decay	3						
	21	Nuclear reactions, Nuclear fission	3						
	22	Nuclear fusion in stars	1						
	Section 12.5,	ons from References: 12.1, 12.2, 12.4 (Tunnel theory concept only), 12.6, 12.8, 12.9, 12.10, 12.11, Book 1							
V		PRACTICALS	30						
	Cond	uct any 6 experiments from the given list and 1 additional experiment,							
	decid	ed by the teacher-in-charge, related to the content of the course. The 7 th							
	experiment may also be selected from the given list. Other experiments								
	listed here may be used as demonstrations of the concepts taught in the								
	cours	е.							
	Neces	ssary theory of experiments can be given as Assignment/ Seminar.							
	1	Determination of Plank's constant using LEDs							
			•						

	• Observe the turn-on voltage, V_0 of LEDs and calculate the	
	value of <i>h</i> . Use at least 4 different colors of LED (with transparent casing)	
	• Plot $\frac{1}{2} - V$, graph using Python, fit a straight line to get the	
	slope and estimate the value of h .	
	• Calculate the %error.	
	• Programmable voltage source of ExpEYES may be used to	
2	find the turn-on voltage.	
Ζ	and photon energy	
	and photon chergy.	
	• Familiarize the initial adjustments and measurements in the	
	 Mount the grating at normal incidence on the spectrometer. 	
	• Determine the wavelengths of the sodium vapor lamp and	
	calculate the associated photon energy.	
	• Determine the approximate range of the wavelengths of the continuous spectrum of incandescent/white LED lamp or any	
	one coloured LED and calculate the associated photon energy.	
	• The readings of the first order spectrum will be enough.	
	Number of lines/m of the grating can be given.	
3	Mercury spectrum- Determination of wavelength and photon	
	energy.	
	• Determine wavelength of any four prominent lines and	
	associated photon energy of the mercury spectrum using a spectrometer with grating at normal incidence	
	 The readings of the first order spectrum will be enough. 	
	Number of lines/m of the grating may be given.	
4	Hydrogen spectrum - Determination of wavelengths and	
	calculation of the Rydberg's constant.	
	• Determine the wavelengths and photon energy in eV of the	
	prominent lines of the Balmer series of the Hydrogen	
	incidence.	
	• Calculate the Rydberg's constant and estimate the % error.	
	• The readings of the first order spectrum will be enough.	
5	Number of lines/m of the grating may be given.	
5	wave I ackets - Analysis of Deats in sound.	
	• The experiment is intended to understand the concept of wave	
	 Generate sounds waves of two near frequencies using 	
	smartphone/ExpEYES/Function generator and the	
	superimposed wave can be recorded and analysed using	
	smartphone/ExpEYES/CRO	
	• Change the separation between the frequencies and compare the results with the theoretical values	
	• <u>https://expeyes.in/experiments/sound/beats.html</u>	

	Multi Tone generator and Audio scope tools of Phyphox may	
	be used <u>https://phyphox.org/experiment/tone-generator/</u>	
6	7. Analysis of Hydrogen spectra using the Tracker Video Analysis	
	• Calibrate the video of the Hydrogen spectra in the Tracker	
	tool using two laser wavelengths/lines of mercury spectra.	
	• Plot the intensity profile, find the prominent wavelengths of the Delmar series and coloulate the Dydhere's constant.	
	Estimate the % error	
	 Pre recorded video of the Hydrogen spectra can be used 	
	• <u>https://physlets.org/tracker/</u> .	
	 https://www.youtube.com/watch?v=UCCPkJpUQEw 	
7	Black body spectrum of Sun -Estimation of surface temperature	
	using the Tracker Video Analysis tool.	
	• Calibrate the video of the solar spectra in the Tracker tool	
	using two laser wavelengths/lines of mercury spectra.	
	• Plot wavelength vs intensity, get λ_{max} and using Wein's law	
	calculate the surface temperature.	
	Pre recorded video of the solar spectra can be used.	
8	Verification of Wein's displacement law and Stefan's law using	
	incandescent bulb.	
	• Calibrate the video of the spectra of the incandescent bulb in	
	the Tracker tool using two laser wavelengths/lines of mercury	
	spectra.	
	• Plot wavelength vs intensity and note λ_{max} .	
	• Repeat the experiment by increasing the operating voltage of	
	the incandescent bulb(hence increasing the temperature of the	
	Source)	
	Stefan's law.	
9	Study the specific rotation of the sugar solution using a	
	polarimeter.	
	• Determine the specific rotation corresponding to different	
	concentrations of the sugar dissolved in water.	
	• Draw a graph between rotation and concentrations and verify	
	the linear relationship.	
10	Verification of Malus's law using polarizer, analyzer and photo	
	detector	
	• Unpolarized light is allowed to pass through a polarizer and is	
	observed through an analyzer.	
	• Vary the angle between the axes of polarizer and analyzer and	
	measure the intensity of the light (current output of the	
	photodetector).	
	• Plot $\theta - I$ and $\cos^2 \theta - I$ graphs and verify the Malus's law.	

	 A flat computer monitor (or LCD TV screen) in plain white color can be used as the source of linear polarized light. The ambient light sensor of the smartphone and the orientation sensor of the smartphone can be used to measure the illuminance and the angles respectively. A small piece of polarizer (a square of about 1 cm side) from an old calculator's display was placed over the ambient light sensor as analyser. <u>https://arxiv.org/pdf/1607.02659</u> 	
11	Brewster's law experiment, determination of angle of polarisation	
	and refractive index.	
	 Experimental arrangement- Sodium vapour lamp, Spectrometer, Polarizer (Graduated on 360° rotating) coupled in front of the spectrometer telescope, prism or glass plate. Get the angle of incidence corresponding to the minimum intensity of light and hence calculate the refractive index of the material. <u>https://www.youtube.com/watch?v=f2A8sM1xhbQ</u> 	
12	Mapping of the magnetic field lines of a bar magnet.	
	 Fix a paper on a drawing board kept on a table and place the bar magnet at the center along the magnetic meridian. Using a small compass needle, map the magnetic field lines of the magnet placed with north pole pointing south Mark the null points (where the horizontal component of Earth's magnetic field, Bh cancels the field due to magnet) along the axial/equatorial line and measure the distance, 2d, between them. Calculate the moment of the magnet. m = 4π/μ0 (d²-l²)²/2d B_h 	
13	Circular coil- Verification of Biot Savart's law and determination	
	of Bh.	
	• Move a compass through a platform along the axis of the coil carrying a study current. Note the deflection of the needle and plot magnetic flux density ($B = B_h tan\theta$) as a function of	
	 distance. Optional: Smartphone magnetometer may be used to measure the strength of the magnetic field along the axial line and plot the data. <u>https://phyphox.org/experiment/magnetic-field/</u> Experiment 62 of Book 2 By varying current and (or) distance of the compass box along the axial line of the coil, note the deflection and hence determine the value of Bh. 	
14	Calibrate the ammeter using potentiometer	
	• Standardize the potentiometer using a Danial cell or any other standard voltage source.	

 Determine the current for at least 8 trials and draw the calibration graph. 15 Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet. Form a parallel plate capacitor with dielectric material filled between the plates. Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx10cm, or greater) Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates) By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid. http://www.indosawedu.com/dielectric-constant.php 			
 Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet. Form a parallel plate capacitor with dielectric material filled between the plates. Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx 10cm, or greater) Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates) By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material,determine the dielectric constant of the given material/liquid. http://www.indosawedu.com/dielectric-constant.php 		• Determine the current for at least 8 trials and draw the calibration graph.	
By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid. http://www.indosawedu.com/dielectric-constant.php	15	 Determine the current for a feast of thats and draw the calibration graph. Parallel plate capacitor. (a) verify the relationship between capacitance and the area of the plates (b) determination of dielectric constant of thin dielectric sheet. Form a parallel plate capacitor with dielectric material filled between the plates. Multimeter/ ExpEYES can be used to measure the capacitance. (For a significantly measurable value of the capacitance, use plates of dimension 10cmx10cm, or greater) Change the area of the capacitor plates and verify the relationship of the capacitance on the area (Using the same set of plates, the area can be changed by varying the overlapping region of the plates) 	
https://www.youtube.com/watch?app=desktop&v=sx0tzAj-Dm4 https://www.youtube.com/watch?v=lKfIkUuFT-U		 By measuring the capacitance for different areas of the capacitor plates and (or) thickness of the dielectric material, determine the dielectric constant of the given material/liquid. http://www.indosawedu.com/dielectric-constant.php https://www.youtube.com/watch?app=desktop&v=sx0tzAj-Dm4 https://www.youtube.com/watch?v=lKflkUuFT-U 	

Books and References:

- 1. Concepts of Modern Physics, Arthur Beiser 6th Edition (Book 1)
- 2. Smartphones as Mobile Minilabs in Physics(Edn. 1) by Jochen Kuhn & Patrik Vogt, Springer, (Book 2)
- 3. Modern Physics for Scientists and Engineers" by John Morrison
- 4. Modern Physics by Raymond A. Serway
- 5. Introduction to Nuclear and Particle Physics V K Mittal, R C Verma and S C Gupta
- 6. Introductory Nuclear Physics by Kenneth S. Krane
- 7. Principles of Nuclear Physics by A. B. Migdal
- 8. <u>https://phyphox.org/</u>
- 9. https://physlets.org/tracker/
- 10. https://expeyes.in/

	_		_	_	_	_	_	_	_			_	_
	PS	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	PO	PC
	01	2	3		05	6						6	7
CO 1	3	2	2	1	1	0	3	2	1	1	2	0	0
CO 2	2	3	2	1	1	1	3	3	1	0	2	0	0
CO 3	1	2	3	3	1	1	2	2	2	2	2	0	0

Mapping of COs with PSOs and POs :

CO 4	1	1	1	3	2	2	2	1	2	2	3	0	0
CO 5	1	2	1	1	3	1	2	2	2	2	3	0	0
CO 6	1	2	1	1	3	2	2	1	2	2	3	0	0

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/	Assignment	Practical Skill	End Semester
	Practical Exam	/ VIVa	Evaluation	Examinations
CO 1	\checkmark	1		✓
CO 2	✓	1		✓
CO 3	\checkmark	1		✓
CO 4	1	1		1
CO 5	1	1		1
CO 6		1	1	

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc PHYSICS HONOURS

Programme	B.Sc. Physics Honours						
Course Title	SOLID STATE PHYSICS AND SPECTROSCOPY						
Type of Course	Minor (SET II: MATERIALS PHYSICS)						
Semester	III						
Academic Level	200 - 299						
Course Details	Credit	Lecture	Tutorial	Practical	Total		
		per week	per week	per week	Hours		
	4	3	-	2	75		
Pre-requisites	Basic knowledge calculus, atomic theory and electromagnetic spectrum						
Course	This course discusses the concepts of quantum mechanics, band theory						
Summary	and different types of spectroscopy at a fundamental level.						

Course Outcomes (CO):

CO	CO Statement	Cogniti	Knowle	Evaluation
		ve	dge	Tools used
		Level*	Categor	
			y#	
CO1	Define quantum mechanics and its			
	fundamental principles, explain the concept of			

	quantization, understand the mathematical			Instructor-create
	representation of wave functions and their	U & Ap	Р	d exams /
	interpretation. Application of Schrodinger			Quiz/Assignmen
	equation for solving different physical systems.			ts
CO2	Understanding of Crystalline and Amorphous			Instructor
	Solids and distinguishing between them.			created
	Understand the relationship between bonding	U	С	Assignment /
	and properties in different types of crystals			Exams/Seminars
CO3	Explain band theory of solids and apply it in			Seminar/Present
	explaining the electronic structure of materials.			ation / Group
	Describe the formation of energy bands and			Tutorial Work
	band gaps in solids and their influence on	Ар	Р	
	material properties.			
CO4	Explain the concept of quantization of energy			
	and its importance in spectroscopy. Identify the			
	types of molecular energies. Describe the			Instructor-create
	process of absorption and emission of radiation	U	С	d exams / Home
	and understand the Einstein coefficients			Assignments
	governing these processes and their relation.			
CO5	Classify various spectroscopic methods used			
	for sample analysis, like microwave			One Minute
	spectroscopy, Infrared Spectroscopy, Electronic	An	Р	Reflection
	spectroscopy, Raman spectroscopy and analyse			Writing
	the possibility of applying these techniques to			assignments and
	identify material properties.			exams
CO6	Develop practical skills to perform spectra and			Practical
	material property related experiments and	E & C	М	Assignment /
	analyse characteristics of different spectras.			Observation of
				Practical Skills /
				Viva Voce
* - Rer	nember (R), Understand (U), Apply (Ap), Analyse	e (An), Eva	luate (E), C	Create (C)
# - Fac	tual Knowledge(F) Conceptual Knowledge (C) Pr	ocedural K	nowledge	(P) Metacognitive
Knowl	edge (M)			

Detailed Syllabus:

Modul	Uni	i Content H			
e	t		(45 k		
		+30)	(70)		
Ι		Quantum Mechanics	16	22	
	1	Quantum Mechanics	2		
	2	The Wave Equation	2		
	3	Schrodinger's equation : Time Dependent form	2		
	4	Expectation Values	3		
	5	Operators	2		
	6	Schrodinger's Equation : Steady state form	3		
	7	Particle in a box problem	2		
	Sectio	ons 5.1, 5.2, 5.3, 5.5, 5.6, 5.7, 5.8 of chapter 5 of Book 1			
II		Bonding in Solids and Energy Bands	11	18	
	8	Crystalline and amorphous solids	2		
	9	Ionic Crystal	2		
	10	Covalent Crystal	1		
	11	Van der Waal's bond	2		
	12	Metallic bond	2		
	13	Band Theory of Solids	2		
	Sectio	ons 10.1, 10.2, 10.3, 10.4, 10.5, 10.6 of Book 1			
III		Introduction to Spectroscopy	10	16	
	14	Electromagnetic spectrum and Quantization of energy	1		

	15	Types of molecular energies and spectroscopic methods	3			
	16	Spectral line width	2			
	17	Absorption and emission of radiation, Einstein coefficient (excluding	2			
		derivation)				
	18	Lasers	2			
	Sectio	ons 1.1 - 1.7 of chapter 1 of Book 2 (Chapter 1 complete)				
IV	Spectroscopic Methods of sample analysis					
	19	Microwave spectroscopy	2			
	20	Infrared Spectroscopy (vibration spectra only)	2			
	21	Electronic spectroscopy	2			
	22	Raman spectroscopy: Introduction, Quantum theory of Raman	2			
		scattering, Rotational Raman spectra of linear molecules				
	Sectio	ons 8.6, 8.7, 8.8 of chapter 8 of Book1, sections 8.1, 8.2.2 and 8.3.1 of				
	chapt	er 8 of Book 2				
V		PRACTICALS	30			
	Cond	uct any 6 experiments from the given list and 1 additional experiment,				
	decid	ed by the teacher-in-charge, related to the content of the course. The 7^{th}				
	exper	iment may also be selected from the given list.				
	Neces	ssary theory of experiments can be given as Assignment/ Seminar.				
	1	Band gap of a semiconductor				
		• Measure the reverse bias current/resistance of a				
		semiconductor diode as a function of temperature, using				
		Carey Foster's bridge or Potentiometer or ExpEYES or any				
		other suitable method.				
		• Plot the logarithm of resistance/current against the inverse				
		of temperature.				

• From the slope, the band gap from the semiconductor can	
be obtained.	
2 Wavelength of laser using grating	
• The laser light diffracted from the transmission grating is	
allowed to fall on a screen and record the maxima points in a	
paper and calculate the wavelength of the laser.	
• Determine the number of lines/ meter of the grating using the	
green line of the mercury.	
3 Single slit diffraction using laser - Determination of slit width.	
• The laser light diffracted from the narrow slit is allowed to	
fall on a screen and record the maxima or minima points in a	
paper.	
• From the width of the central maxima or the position of	
minimum intensity points, calculate the slit width.	
• Verify the slit width using a traveling microscope.	
• Wavelength of laser can be found using diffraction grating of	
known N.	
4 Determine the numerical aperture (NA) of an optical fiber using	
a laser	
• Couple the light from the laser source onto one of the fiber	
ends and the light coming from the other end is allowed to fall	
on a screen(sheet having circular markings) placed	
perpendicular to the axis of the fiber.	
• Measure the diameter of the laser beam on the screen and the	
distance between the screen and fiber output end and hence	
calculate the NA.	
5 Determination of the dispersive power of a solid prism using a	
spectrometer	
• Find the angle of the prism and the angle of minimum	
deviation for prominent lines of the mercury spectrum using a	
spectrometer.	

		Calculate the refractive indices corresponding to the colors	
		and find the dispersive power of the material of the prism for	
		two pairs of wavelengths.	
F	6	Spectrometer-Determination of the Cauchy's constants of the	
		given prism	
		• Find the angle of the prism, the minimum deviation angles of	
		the prominent lines of the mercury spectrum and hence	
		calculate the refractive indices for the colors.	
		• Determine A and B from the $\mu - \frac{1}{\lambda^2}$ graph.	
F	7	Determine the refractive index of (a) given liquid and (b)the	
		material of a lens, by forming a liquid lens.	
		• Through this experiment the students are expected to get the	
		concepts of image formation, combination of lenses and	
		radius of curvature of the surface of lens.	
		• Determine the radius of curvature of the lens by Boy's method	
		and hence calculate the refractive indices.	
F	8	Determine the focal length of the combination of two lenses	
		separated by a distance.	
		• Determine the focal lengths, f1 and f2 of the two lenses using	
		an illuminated cross-slit screen holder, nodal slide(for placing	
		the lenses) and plane mirror arrangement.	
		• Place the two lenses separated by a distance d, determine the	
		focal length, F of the combination and verify the relation	
		• $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$.	
		• The combination of the lenses in the eyepiece of the	
		spectrometer/ travelling microscope may be used for the	
		study.	
		• <u>https://www.youtube.com/watch?v=IOIEEtyNPBg</u>	
		• <u>https://www.youtube.com/watch?v=tNo4Ipk74SU</u>	

9	Air wedge-determination of the radius of a thin wire/human	
	hair/thin foil.	
	• Form interference fringes using sodium-source, in the	
	air-film in between wedge formed by placing the given	
	sample between the glass plates.	
	• Measure the positions of the successive dark bands using a	
	travelling microscope and determine the angle of the wedge	
	and thickness of the sample given.	
10	Newton's rings-determination of the wavelength of sodium light	
	• Form of Newton's rings in the air-film in between a	
	plano-convex lens and a glass plate using sodium-source.	
	• Determine the radius of curvature by Boy's method and	
	determine the wavelength of the source.	
11	Construction of the center tapped full wave rectifiers and	
	regulated power supply	
	• Construct a center tapped full wave rectifier without filter and	
	with a filter.	
	• Measure the AC and DC voltages using a multimeter and	
	calculate the ripple factor without and with a filter.	
	• Observe the variation of the ripple factor with load resistance,	
	when filter is used.	
	• Construct 5V/12V regulated power supply using 78XX IC.	
12	Study the characteristics of Zener diode and construct a voltage	
	regulator	
	• Study the V-I characteristics of zener diode and hence	
	determine the breakdown voltage.	
	• <u>https://expeyes.in/experiments/electronics/zenerIV.html</u>	
	• Construct a voltage regulator using a zener diode and	
	determine the percentage of voltage regulation.	
13	Flywheel- Determination of the Moment of Inertia	

		• This experiment aims to help students grasp the concept of					
		energy conservation and the dynamics of rotation.					
		• Do at least 9 trials for different masses and number of turns					
		wound on the axil.					
	14	Compound Pendulum- Acceleration Due to Gravity and Moment					
		of Inertia and Verification of Parallel Axis Theorem					
		• Plot a graph of distance of knife edge from one end Vs period					
		of oscillations. Using the measurement from the graph,					
		calculate g.					
		• Calculate the radius of gyration and hence the moment of					
		inertia about CM. Compare the result obtained by the direct					
		calculation $I_{CM} = \frac{ML^2}{12}$					
	15	Sonometer - Determine the Frequency of AC					
		• Estimate the linear mass density of the wire.					
		• Draw $L^2 - m$ graph and from the slope calculate the					
		frequency.					
Books an	d Refe	rences:					
1.Concep	pts of N	Modern Physics, Arthur Beiser 6th Edition (Book 1)					
2. Molecu	ular str	ucture and spectroscopy, (Second edition) G. Aruldhas (Book 2)					
3.Kittel's	Introd	uction to Solid State Physics, Wiley India Edition					
4.Solid S	tate Ph	ysics Structure and properties of materials by M.A.Wahab (Third Edition	1)				
5.Solid S	tate Ph	ysics" by Neil W. Ashcroft and N. David Mermin.					
6.Solid S	tate Ph	ysics: Essential Concepts by David W. Snoke.					
7. Principles of Molecular Spectroscopy by Colin N. Banwell and Elaine M. McCash							
8. Spectra	8. Spectra of Atoms and Molecules by Peter F. Bernath						
9.Molecu	9.Molecular Spectroscopy by Jeanne L. McHale						
10. <u>https:</u>	//phypl	hox.org/					
11 <u>https:/</u>	/physle	ets.org/tracker/					

12. https://expeyes.in/

	PSO	PSO	PSO	PSO4	PS	PSO	PO1	PO2	PO3	PO4	PO5	РО	PO
	1	2	3		05	6						6	7
CO 1	3	2	2	1	2	2	3	2	2	2	3	3	0
CO 2	1	3	2	2	2	1	2	3	2	1	3	2	0
CO 3	1	2	3	2	2	2	2	2	3	1	3	3	0
CO 4	2	1	2	2	2	1	2	2	2	1	3	2	0
CO 5	2	1	3	2	3	1	2	1	2	2	3	3	0
CO 6	2	3	1	2	3	3	2	2	2	1	3	3	0

Mapping of COs with PSOs and POs :

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- InternalTheory/Practical Exam
- Assignments /Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory/ Practical Exam	Assignmen	Practical Skill	End Semester
CO 1		t / viva	Evaluation	
01	✓	✓		✓
CO 2	✓	1		1
CO 3	✓	✓		✓
CO 4	✓	✓		✓
CO 5	1	✓		✓
CO 6		1	✓	