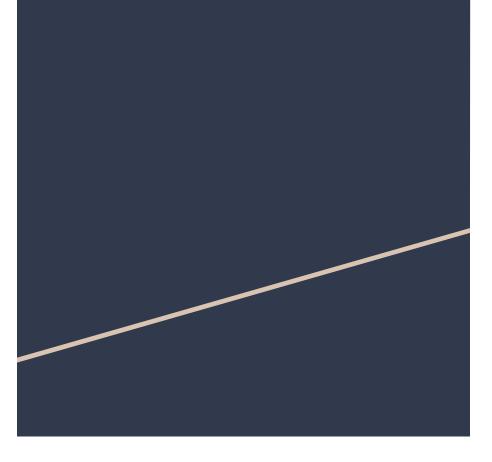
BINDING ENERGY

LALY A.S. ASST. PROFESSOR DEPT. OF PHYSICS LITTLE FLOWER COLLEGE GURUVAYOOR

Mass defect

Binding energy holds nucleons together within the nucleus.


The mass of nucleus is smaller than the sum of the masses of its constituents.The difference is called mass defect.

Mass defect=Zm_p+Nm_n-m

Z =No.of protons, m_p =mass of proton

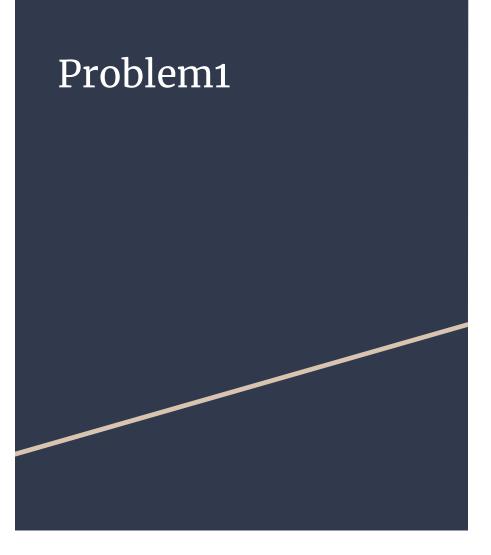
N=No.of neutrons, m_n =mass of neutron and m is the mass of nucleus

Binding energy

The energy corresponds to the missing mass is called binding energy

Binding energy=(Mass defect)c² in Joules

Or

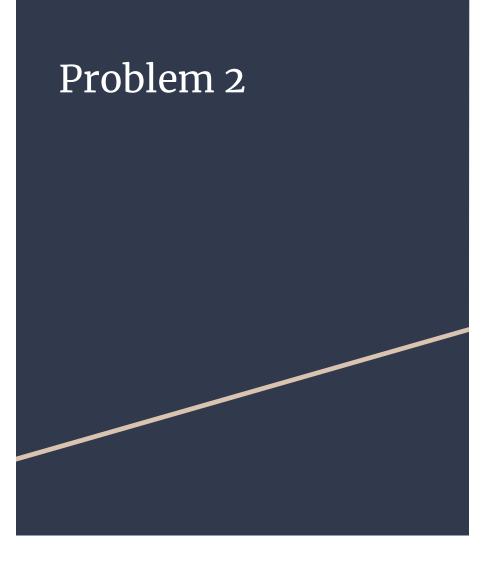

Binding energy=(Mass defect)931.49 in MeV

In equation form $B.E=(Zm_p+Nm_n-m)931.49$

Binding energy is the energy released when a nucleus is formed from its components

Or

It is the energy required to split a nucleus into its components


Find the Binding energy of $_{10}$ Ne²⁰.

Mass of proton=1.007276u, mass of neutron=1.008665u and mass of neon=19.9924u

$B.E=(Zm_{p}+Nm_{n}-m)931.49 \text{ MeV}$

= (10 **x** 1.007276 + 10 **x** 1.008665 - 19.9924)931.49

=155.56 MeV

Helium nucleus has a mass of 4.00151 u.Mass of proton is 1.00727u and that of neutron is 1.00865u.Find the Binding energy per nucleon.

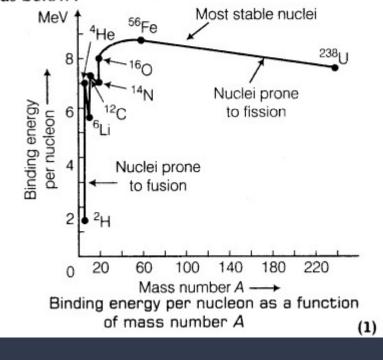
B.E = $(Zm_{p}+Nm_{n}-m)931.49 \text{ MeV}$

=(2 x 1.00727+2 x 1.00865-4.00151)931.49

=.03029 x 931.49=28.2148MeV

B.E/nucleon=28.2148/4=7.0537MeV

Binding energy/Nucleon


Binding energy per nucleon is the energy required to release a single nucleon from a nucleus.

B.E/nucleon=Binding Energy/No.of nucleonsin the nucleus ORB.E/A where A is themass number.

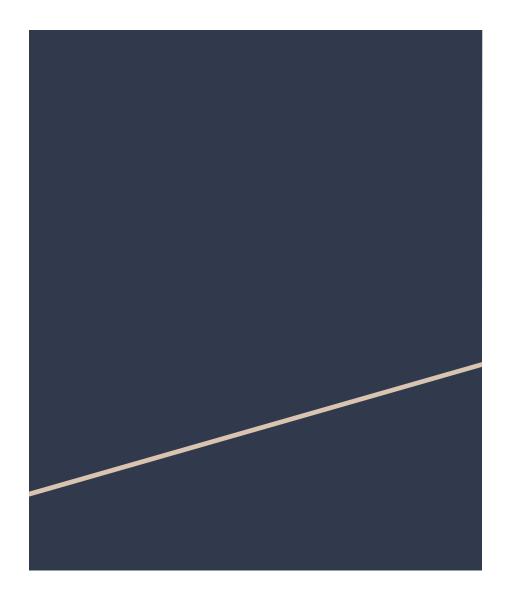
More the value of B.E/A means the nucleus is more stable.

Graph: B.E/A Vs A

The binding energy per nucleon curve is shown as below:

The graph has its maximum of 8.8MeV/nucleon where the mass no.is $56.(_{26}Fe^{56}-an$ isotope of iron). This is therefore the most stable nucleus.

The peak at A=4 corresponds to exceptionally stable $_{\rm 2}{\rm He^4}$ nucleus,)alpha particle)


The B.E/nucleon is practically constant for nuclei of mass number between 30 and 170.

For nuclei with A>170,the B.E/A is very low,due to which the heavy unstable nucleus split into two or more lighter nuclei of greater Binding energy per nucleon.This process is called **Nuclear fission**.Energy is released in this process.

Eg:If $_{\rm 92}{\rm U}^{\rm 238}$ is broken into two smaller nuclei,188 MeV energy is released.

For lighter nuclei A<10the B.E/A is small ,hence two or more nuclei fuse to form a heavy nucleus. This process is called **Nuclear fusion**. Energy is released during the process.

Eg:lf two $_1\mathrm{H}^2$ nuclei combine to form a $_2\mathrm{He}^4$ nucleus ,23 MeV energy is released.

THANK YOU....