AMPLIFIER

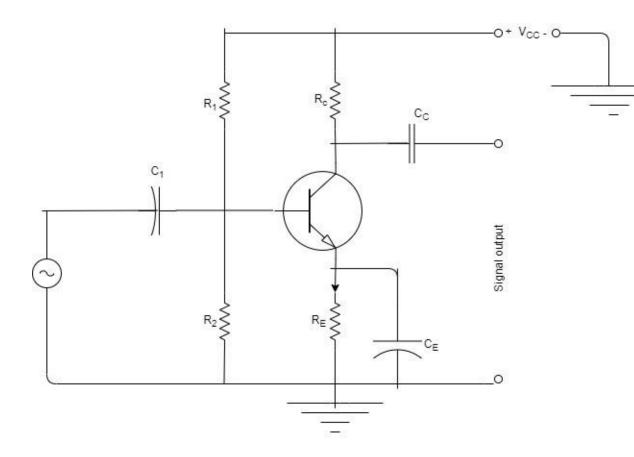
Prepared By Anne Jose M Department of Physics, Little Flower College, Guruvayoor

Amplifier

An electronic circuit that is used to amplify or increase the strength of an input parameter of the input ac signal.

Input parameter	Type of amplifier
current	current amplifier
voltage	voltage amplifier
power	power amplifier

Most amplifiers used transistors for their action.


Amplifier

•An electronic circuit that is used to amplify or increase the strength of an input parameter.

Input parameter	Type of amplifier
current	current amplifier
voltage	voltage amplifier
power	power amplifier

Most amplifiers used transistors for their action.

Single Stage Common Emitter Amplifier

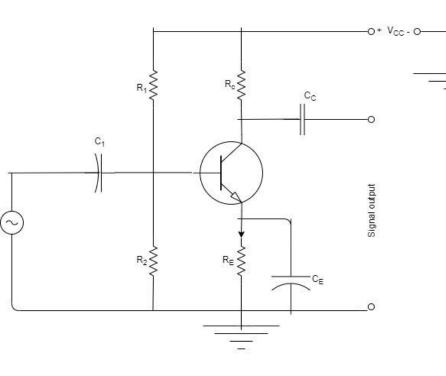
Various circuit elements Biasing circuit

 R_1 , R_2 provide voltage divider bias R_E provides stabilization.

Input capacitor C_{in}

- To couple the input signal to the base of the transistor
- To prevent the input dc from affecting the biasing conditions

Emitter bypass capacitor C_E


• To provide low reactance path to the amplified a.c. signal.

Coupling capacitor C_C

- To couple one stage of amplifier to the next stage.
- To isolate dc of one stage from the next stage.

Various circuit currents

Base Current

Total base current = dc base current + ac base current $i_B = I_B + i_b$

Collector Current

Total collector current = dc collector current + ac collector current $i_C = I_C + i_c$ where $I_C = \beta I_B$ is the zero signal collector current and $i_c = \beta i_b$ is the collector current due to signal.

Emitter Current

Total emitter current = dc emitter current + ac emitter current $i_E = I_E + i_e$

Phase Reversal

Working

Input is fed between base and emitter. Output is taken from collector and emitter.

SIGNAL

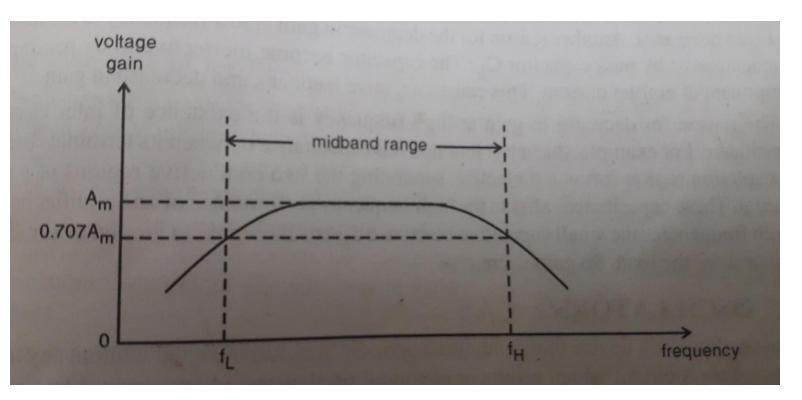

$$R_1$$
 R_2
 $R_$

Total instantaneous output voltage $v_{CE} = V_{CC} - i_C R_C$

Signal voltage increases during positive half cycle \rightarrow base current increases \rightarrow collector current increases \rightarrow voltage drop $i_C R_C$ increases \rightarrow output voltage v_{CE} decreases

ie, as the signal voltage is increasing in the positive half cycle, the output voltage is increasing in the negative direction. ie output is 180° out of phase with the input.

Voltage gain Ratio of ac output voltage to the ac input signal.


Open circuit Voltage gain
$$A_v = \frac{V_{out}}{V_{in}} = \frac{i_c R_C}{i_b R_{in}} = \beta \frac{R_C}{R_{in}} = \text{current gain x resistance gain}$$
 Voltage gain $A_v = \frac{V_{out}}{V_{in}} = \frac{i_c R_{AC}}{i_b R_{in}} = \beta \frac{R_{AC}}{R_{in}}$

Power gain $A_p = \frac{i_c^2 R_C}{i_b^2 R_{in}} = \beta^2 \frac{R_C}{R_{in}}$ = current gain x voltage gain

Power gain $A_p = \frac{i_c^2 R_{AC}}{i_b^2 R_{in}} = \beta^2 \frac{R_{AC}}{R_{in}}$

Frequency Response and Band width

Frequency response is the curve between voltage gain and signal frequency of an amplifier

Band width of an amplifier is the difference between upper and lower cut off frequencies.

 $\mathsf{BW}=f_H-f_L$

THANK YOU