AMPLIFIER

Prepared By

Anne Jose M
Department of Physics,
Little Flower College, Guruvayoor

Amplifier

An electronic circuit that is used to amplify or increase the strength of an input parameter of the input ac signal.

Input parameter	Type of amplifier
current	current amplifier
voltage	voltage amplifier
power	power amplifier

Most amplifiers used transistors for their action.

Amplifier

- An electronic circuit that is used to amplify or increase the strength of an input parameter.

Input parameter	Type of amplifier
current	current amplifier
voltage	voltage amplifier
power	power amplifier

Most amplifiers used transistors for their action.

Single Stage Common Emitter Amplifier

Various circuit elements

Biasing circuit
R_{1}, R_{2} provide voltage divider bias
R_{E} provides stabilization.
Input capacitor $C_{\text {in }}$

- To couple the input signal to the base of the transistor
- To prevent the input dc from affecting the biasing conditions
Emitter bypass capacitor C_{E}
- To provide low reactance path to the amplified a.c. signal.
Coupling capacitor C_{C}
- To couple one stage of amplifier to the next stage.
- To isolate dc of one stage from the next stage.

Various circuit currents

Base Current

Total base current = dc base current + ac base current
$i_{B}=I_{B}+i_{b}$

Collector Current

Total collector current $=$ dc collector current + ac collector current $i_{C}=I_{C}+i_{C} \quad$ where $I_{C}=\beta I_{B}$ is the zero signal collector current and $i_{c}=\beta i_{b}$ is the collector current due to signal.

Emitter Current

Total emitter current $=$ dc emitter current + ac emitter current
$i_{E}=I_{E}+i_{e}$

Phase Reversal

Working

Input is fed between base and emitter.
 Output is taken from collector and emitter.

Total instantaneous output voltage $v_{C E}=V_{C C}-i_{C} R_{C}$

Signal voltage increases during positive half cycle \rightarrow base current increases \rightarrow collector current increases \rightarrow voltage drop $i_{C} R_{C}$ increases \rightarrow output voltage $v_{C E}$ decreases
ie, as the signal voltage is increasing in the positive half cycle, the output voltage is increasing in the negative direction. ie output is 180° out of phase with the input.

Voltage gain

Ratio of ac output voltage to the ac input signal.

Load R_{C} parallel to R_{L}.
Equivalent load for a.c. is

$$
R_{A C}=R_{C} \| R_{L}=\frac{R_{C} \times R_{L}}{R_{C}+R_{L}}
$$

Output volage $V_{\text {out }}=i_{c} R_{A C}$
Input volage $V_{i n}=i_{b} R_{\text {in }}$

Open circuit Voltage gain $A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{i_{c} R_{C}}{i_{b} R_{\text {in }}}=\beta \frac{R_{C}}{R_{\text {in }}}=$ current gain x resistance gain Power gain $A_{p}=\frac{i_{c}^{2} R_{C}}{i_{b}^{2} R_{i n}}=\beta^{2} \frac{R_{C}}{R_{i n}}=$ current gain x voltage gain

Voltage gain $A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}=\frac{i_{c} R_{A C}}{i_{b} R_{\text {in }}}=\beta \frac{R_{A C}}{R_{\text {in }}}$

$$
\text { Power gain } A_{p}=\frac{i_{c}^{2} R_{A C}}{i_{b}^{2} R_{i n}}=\beta^{2} \frac{R_{A C}}{R_{i n}}
$$

Frequency Response and Band width

Frequency response is the curve between voltage gain and signal frequency of an amplifier

Band width of an amplifier is the difference between upper and lower cut off frequencies.
$\mathrm{BW}=f_{H}-f_{L}$

THANK YOU

